MA547: Complex Analysis

(Assignment 4: Complex integration, Cauchy theorem, identity theorem and maximal principle) January - April, 2025

- 1. Let $\gamma(0) = 0$ and $\gamma(t) = e^{\frac{i-1}{t}}$ for all $t \in (0, 1]$. Show that $\gamma : [0, 1] \to \mathbb{C}$ is a rectifiable path in \mathbb{C} . Also, determine the length of γ .
- 2. Let $\gamma(0) = 0$ and $\gamma(t) = t + it \sin \frac{1}{t}$ for all $t \in (0, 1]$. Show that $\gamma : [0, 1] \to \mathbb{C}$ is a path in \mathbb{C} but γ is not rectifiable.
- 3. Let $\gamma_1 : [a, b] \to \mathbb{C}$ and $\gamma_2 : [a, b] \to \mathbb{C}$ be rectifiable paths in \mathbb{C} such that $\gamma_1(b) = \gamma_2(a)$. Show that the path $\gamma_1 + \gamma_2$ is rectifiable and that $L(\gamma_1 + \gamma_2) = L(\gamma_1) + L(\gamma_2)$.
- 4. If γ is a rectifiable path in \mathbb{C} , then evaluate $\int |dz|$, with justification.
- 5. Let γ be the polygon [1-i, 1+i, -1+i, -1-i]. Express γ as a path and hence evaluate $\int_{\gamma} \frac{1}{z} dz$.
- 6. Evaluate the integral $\int_{\gamma} |z| \overline{z} dz$ where γ is the circle |z| = 2.
- 7. Without evaluating the integral, show that (a) $\left| \int_{\gamma} \frac{z+4}{z^3-1} dz \right| \leq \frac{6\pi}{7}$, where $\gamma(t) = 2e^{it}$ for all $t \in [0, \frac{\pi}{2}]$. (b) $\left| \int_{\gamma} \frac{dz}{z^4} \right| \leq 4\sqrt{2}$, where γ denotes the line segment in \mathbb{C} from i to 1. (c) $\left| \int_{\gamma} (e^z - \overline{z}) dz \right| \leq 60$, where γ denotes the triangle [0, 3i, -4, 0] in \mathbb{C} .
 - (d) $\left| \int_{\gamma} \frac{dz}{z^2 + 1} \right| \leq \frac{1}{2\sqrt{5}}$, where γ is the straight line segment from 2 to 2 + i.
- 8. State TRUE or FALSE with proper justification: If $f : \mathbb{D} \to \mathbb{C}$ is continuous such that |f(z)| < 2 for all $z \in \mathbb{D}$ and if $\gamma(t) = \frac{1}{2} + \frac{1}{4}e^{2it}$ for all $t \in [0, 2\pi]$, then it is necessary that $\left| \int f \right| < 2\pi$.
- 9. Let $f: \Omega \to \mathbb{C}$ be continuous, where Ω is a domain in \mathbb{C} . Let $z_0 \in \Omega$ and for each r > 0, let $\gamma_r(t) = z_0 + re^{it}$ for all $t \in [0, 2\pi]$. Show that $\lim_{r \to 0} \int_{\gamma_r} f(z) dz = 0$ and $\int_{-\infty}^{\infty} f(z) dz = 0$ and

$$\lim_{r \to 0} \int_{\gamma_r} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0).$$

- 10. Let $f: \mathbb{C} \to \mathbb{C}$ be a bounded continuous function and for each r > 0, let $\gamma_r(t) = re^{it}$ for all $t \in [0, 2\pi]$. Show that $\lim_{r \to \infty} \int_{\gamma_r} \frac{f(z)}{(z z_0)^2} dz = 0$ for all $z_0 \in \mathbb{C}$.
- 11. For each r > 0, let $\gamma_r(t) = re^{it}$ for all $t \in [0, \pi]$. Show that $\lim_{r \to \infty} \int_{\gamma_r} \frac{e^{iz}}{z} dz = 0$. 12. For each r > 0, let $\gamma_r(t) = re^{it}$ for all $t \in [0, 2\pi]$. If p(z) and q(z) are polynomials with
- 12. For each r > 0, let $\gamma_r(t) = re^{it}$ for all $t \in [0, 2\pi]$. If p(z) and q(z) are polynomials with $\deg q(z) \ge \deg p(z) + 2$, then show that $\lim_{r \to \infty} \int_{\gamma_r} \frac{p(z)}{q(z)} dz = 0$.

13. Let $f: G \to \mathbb{C}$ be continuous, where G is an open set in \mathbb{C} . If γ is a smooth path in G such that $0 \notin \operatorname{range}(\gamma)$, then show that

$$\left| \int_{\gamma} \frac{f(z)}{z} dz \right|^2 \le L(\gamma) \left(\max_{z \in \operatorname{range}(\gamma)} \frac{1}{|z|^2} \right) \int_{\gamma} |f(z)|^2 |dz|.$$

14. If $f(z) = \int_0^1 \frac{dt}{t-z}$ for all $z \in \mathbb{C} \setminus [0,1]$, then show that $f : \mathbb{C} \setminus [0,1] \to \mathbb{C}$ is continuous. 15. Let $f(z) = |z|^2$ for all $z \in \mathbb{C}$. Evaluate $\int_{\gamma_1} f(z) dz$ and $\int_{\gamma_2} f(z) dz$, where $\gamma_1 = [1,i]$ and $\gamma_2 = [1, 1+i, i].$

Hence show that $f : \mathbb{C} \to \mathbb{C}$ does not have any primitive on \mathbb{C} .

- 16. Let $z_0 \in \mathbb{C}$ and let γ be a closed rectifiable path in \mathbb{C} such that $z_0 \notin \operatorname{range}(\gamma)$. If $n \in \mathbb{Z}$ and $n \neq 1$, then show that $\int_{\gamma} \frac{dz}{(z-z_0)^n} = 0$. 17. Let $f: G \to \mathbb{C}$ and $g: G \to \mathbb{C}$ be analytic, where G is an open set in \mathbb{C} . If γ is a
- rectifiable path in G joining $z_1 \in G$ to $z_2 \in G$, then show that $\int_{\gamma} fg' = f(z_2)g(z_2) f(z_2)g(z_2)$ $f(z_1)g(z_1) - \int f'g.$
- 18. Evaluate $\int z^2 \sin z \, dz$, where $\gamma(t) = e^{it}$ for all $t \in [0, \frac{\pi}{2}]$.
- 19. If $z, w \in \overset{\gamma}{\mathbb{C}}$ such that $\operatorname{Re}(z) \leq 0$ and $\operatorname{Re}(w) \leq 0$, then show that $|e^z e^w| \leq |z w|$.
- 20. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If |f(z) 1| < 1 for all $z \in \Omega$ and if γ is a closed rectifiable path in Ω , then show that $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$.
- 21. Examine whether the following functions have primitives.
 - (a) $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, defined by $f(z) = \frac{1}{z}$ for all $z \in \mathbb{C} \setminus \{0\}$. (b) $f : \mathbb{C} \to \mathbb{C}$, defined by $f(z) = e^{-z^2}$ for all $z \in \mathbb{C}$.

 - (c) $f : \mathbb{C} \setminus \{i, -i\} \to \mathbb{C}$, defined by $f(z) = \frac{1}{z^2 + 1}$ for all $z \in \mathbb{C} \setminus \{i, -i\}$.
 - (d) $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, defined by $f(z) = \frac{\sin z}{z^2}$ for all $z \in \mathbb{C} \setminus \{0\}$.
- 22. If $\gamma(t) = 1 + 2e^{it}$ for all $t \in [0, 2\pi]$, then explain clearly why Cauchy's theorem for star-shaped domain cannot be applied to get $\int_{\infty} \frac{dz}{z-1} = 0.$

23. If
$$\gamma(t) = e^{it}$$
 for all $t \in [0, 2\pi]$, then evaluate
(a) $\int_{\gamma} \frac{\operatorname{Re}(z)}{2z - 1} dz$ (b) $\int_{\gamma} \frac{|dz|}{|z - a|^2}$, where $a \in \mathbb{D}$ (c) $\int_{\gamma} |z - 1| |dz|$ (d) $\int_{\gamma} \left(\frac{z - 2}{2z - 1}\right)^3 dz$
24. Let $r \in \mathbb{R} \setminus \{1, 2\}$ and $r > 0$. If $\gamma(t) = re^{it}$ for all $t \in [0, 2\pi]$, then determine all possible values of $\int_{\gamma} e^{\sin z^2} dz$

values of $\int_{\gamma} \frac{c}{(z^2+1)(z-2i)^3} dz$. 25. Let $r \in \mathbb{R} \setminus \{2\}$ and r > 0. If $\gamma(t) = re^{it}$ for all $t \in [0, 2\pi]$, then determine all possible values of $\int_{\gamma} \frac{z^2+1}{z(z^2+4)} dz$. 26. Evaluate $\int_{0}^{2\pi} e^{e^{2it}-3it} dt$.

- 27. State TRUE or FALSE with justification: There exists a branch of the logarithm on $\mathbb{C} \setminus [-10, 10].$
- 28. Let $f(z) = \frac{2z^3 + 1}{z^2 + z}$ for all $z \in \mathbb{C} \setminus \{-1, 0\}$. Determine the Taylor series of $f : \mathbb{C} \setminus \{-1, 0\} \to \mathbb{C}$ about *i*.
- 29. Let $f: G \to \mathbb{C}$ be analytic, where G is an open set in \mathbb{C} . Let $z_0 \in G$ and $g(z) = \begin{cases} \frac{f(z) f(z_0)}{z z_0} & \text{if } z \in G \setminus \{z_0\}, \\ f'(z_0) & \text{if } z = z_0. \end{cases}$ Examine whether $g: G \to \mathbb{C}$ is analytic.
- 30. State TRUE or FALSE with justification: If $f : \mathbb{C} \to \mathbb{C}$ is a non-constant analytic function, then there must exist a sequence (z_n) in \mathbb{C} such that $|z_n| > n$ and $|f(z_n)| > n$ for all $n \in \mathbb{N}$.
- 31. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. If there exist M, r > 0 and $n \in \mathbb{N}$ such that $|f(z)| \leq M|z|^n$ for all $z \in \mathbb{C}$ with |z| > r, then show that f is a polynomial of degree at most n.
- 32. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f(0) = 0 and $\lim_{|z| \to \infty} f(z) = 0$. Show that f(z) = 0 for all $z \in \mathbb{C}$.
- 33. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f(0) = 0 and $\lim_{|z| \to \infty} \operatorname{Re}(f(z)) = 0$. Show that f(z) = 0 for all $z \in \mathbb{C}$.
- 34. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that $\operatorname{Re}(f(z)) > 0$ for all $z \in \mathbb{C}$. Show that f is a constant function.
- 35. Let $f : \mathbb{C} \to \mathbb{C}$ be analytic such that $|\operatorname{Re}(f(z)) + \operatorname{Im}(f(z))| \leq 1$ for all $z \in \mathbb{C}$. Show that f is a constant function.
- 36. State TRUE or FALSE with justification: There exists a non-constant bounded analytic function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$.
- 37. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f(z+1) = f(z+i) = f(z) for all $z \in \mathbb{C}$. Show that f is a constant function.
- 38. Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that $f(\mathbb{C})$ is dense in \mathbb{C} .
- 39. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that for each $z \in \mathbb{C}$, either $|f(z)| \leq 1$ or $|f'(z)| \leq 1$. Show that there exist $a, b \in \mathbb{C}$ such that f(z) = az + b for all $z \in \mathbb{C}$.
- 40. If $f(z) = \sum_{n=1}^{\infty} \frac{nz^n}{1-z^n}$ for all $z \in \mathbb{D}$, then show that $f : \mathbb{D} \to \mathbb{C}$ is analytic.
- 41. Let G be an open set in \mathbb{C} . For each $n \in \mathbb{N}$, let $f_n : G \to \mathbb{C}$ be analytic and let $f: G \to \mathbb{C}$. If $f_n \to f$ uniformly on each compact subset of G, then show that for each $k \in \mathbb{N}, f_n^{(k)} \to f^{(k)}$ uniformly on each compact subset of G.
- 42. Let $f: \Omega \to \mathbb{C}$ be an analytic function, where Ω is a domain in \mathbb{C} . If $\{z \in \Omega : f(z) = 0\}$ is uncountable, then show that f(z) = 0 for all $z \in \Omega$.

- 43. Let $f: \Omega \to \mathbb{C}$ and $g: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If f(z)g(z) = 0for all $z \in \Omega$, then show that f(z) = 0 for all $z \in \Omega$ or g(z) = 0 for all $z \in \Omega$.
- 44. Let $f: \overline{\mathbb{D}} \to \mathbb{C}$ and $g: \overline{\mathbb{D}} \to \mathbb{C}$ be continuous such that f and g are analytic on \mathbb{D} . If f(z) = g(z) for all $z \in \mathbb{C}$ with |z| = 1, then show that f(z) = g(z) for all $z \in \mathbb{D}$.
- 45. Prove the fundamental theorem of algebra using the maximum modulus theorem.
- 46. Let f be an entire function such that $|f(0)| \le |f(z)|$ for all $z \in \mathbb{C}$. Then either f(0) = 0 or f is constant.
- 47. If $f : \mathbb{D} \to \mathbb{C}$ is analytic such that $|f'(z)| \leq k$ for all $z \in \mathbb{D}$, then $|f(z_1) f(z_2)| \leq k|z_1 z_2|$ for every pair of points z_1 and z_2 in \mathbb{D} .
- 48. If an entire function f is such that f(z) is real for all $z \in \mathbb{R}$, and $f\left(\frac{1}{2n+1}\right) = f\left(\frac{1}{2n}\right)$ for all $n \in \mathbb{N}$, then f is a constant function.
- 49. Prove that any non-constant harmonic function on a non-empty open set $D \subseteq \mathbb{C}$ is infinitely differentiable (partial derivatives of all orders exist and are continuous on D).
- 50. Let $f : \mathbb{C} \to \mathbb{C}$ be a function which is analytic on $\mathbb{C} \setminus \{0\}$ and bounded on $B(0, \frac{1}{2})$. Show that $\int_{|z|=R} f(z)dz = 0$ for all R > 0.
- 51. If g is an entire function satisfying $|g(z) 2z| \le 1$ on |z| = 1, show that $|g'(0)| \le 3$.
- 52. Suppose f is analytic on the open unit disc D and it satisfies $|f(z)| \leq 1$ for all $z \in D$. Show that $|f'(0)| \leq 1$.
- 53. If $f : \mathbb{C} \to \mathbb{C}$ is continuous and analytic on $\mathbb{C} \setminus [-1, 1]$, then show that f is entire.
- 54. Define $F(z) = \int_{0}^{1} \sin t^2 e^{-itz} dt$. Show that F is entire and satisfying $|F(z)| \le A e^{B|y|}$ for z = x + iy and for some positive constants A and B.
- 55. Find all the entire functions f such that $f(x) = e^x$ for all x in \mathbb{R} .
- 56. If an entire function f does not meet either real or imaginary axis, then show that f is constant.
- 57. Let f and g be analytic functions on a domain D in C. If $\overline{f}g$ is analytic, then show that either f is constant or $g \equiv 0$.
- 58. Let f be a bounded analytic function on the right half plane (RHP). If f is continuous on the imaginary axis and satisfies $\sup_{y \in \mathbb{R}} |f(iy)| \leq M$, then show that $|f(z)| \leq M$ on the RHP. (Hint: Use maximum modulus theorem to $g_{\epsilon}(z) = (z+1)^{-\epsilon}f(z)$ on an appropriate semi-disc.)