MA547: Complex Analysis

(Assignment 3: Differentiability, analyticity and power series)

January - April, 2025

- 1. Show that $f : \mathbb{C} \to \mathbb{C}$ is nowhere differentiable in \mathbb{C} , where for each $z = x + iy \in \mathbb{C}$,
 - (a) $f(z) = \operatorname{Re}(z)$
 - (b) $f(z) = \operatorname{Im}(z)$
 - (c) f(z) = |z|
 - (d) $f(z) = 2x + ixy^2$
 - (e) $f(z) = e^x(\cos y i\sin y)$
- 2. Determine all the points of \mathbb{C} at which $f : \mathbb{C} \to \mathbb{C}$ is differentiable, if for each $z = x + iy \in \mathbb{C}$,
 - (a) $f(z) = x^3 + i(1-y)^3$ (b) $f(z) = z \operatorname{Im}(z)$ (c) $f(z) = x^2 + iy^2$ (d) $f(z) = x^2 + y + i(2y - x)$ (e) $f(z) = z^2 \overline{z}$ (f) $f(z) = x^3 y^2 + ix^2 y^3$ (g) $f(z) = |z|^4$ (h) $f(z) = x^2 - y^2 + 2i|xy|$
- 3. Show that for each of the functions $f : \mathbb{C} \to \mathbb{C}$ defined as below, the Cauchy-Riemann equations are satisfied at 0 but f'(0) does not exist (in \mathbb{C}).

(a)
$$f(z) = \sqrt{|xy|}$$
 for all $z = x + iy \in \mathbb{C}$.
(b) $f(z) = \begin{cases} \frac{z^5}{|z|^4} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$
(c) $f(z) = \begin{cases} \frac{(1+i)\text{Im}(z^2)}{|z|^2} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$

4. Let $f : \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = \begin{cases} \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2} & \text{if } z = x + iy \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$

Show that f is continuous. Also, show that the Cauchy-Riemann equations are satisfied at (0,0) but f is not differentiable at 0.

5. Let $f : \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = \begin{cases} \frac{x^3 y(y - ix)}{x^6 + y^2} & \text{if } z = x + iy \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$ Show that f is continuous. Also, show that the Cauchy-Riemann equations are satis-

Show that f is continuous. Also, show that the Cauchy-Riemann equations are satisfied at (0,0) but f is not differentiable at 0.

6. For each $z \in \mathbb{C}$, let $f(z) = \begin{cases} |z|^2 & \text{if } \operatorname{Re}(z), \operatorname{Im}(z) \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ Determine all the points of \mathbb{R}^2 at which

(a) at least one of the Cauchy-Riemann equations is satisfied.

- (b) both the Cauchy-Riemann equations are satisfied.
- 7. Show that $f : \mathbb{C} \to \mathbb{C}$ is not analytic at any point in \mathbb{C} , where for each $z = x + iy \in \mathbb{C}$,
 - (a) f(z) = z|z|(b) $f(z) = \frac{z}{1+|z|}$ (c) f(z) = xy + iy(d) $f(z) = e^{y}(\cos x + i\sin x)$ (e) $f(z) = x^{2} + iy^{3}$
- 8. Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there does not exist any point c on the line y = 1 - x joining z_1 and z_2 such that

$$\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)$$

(The mean value theorem does not extend to complex derivatives).

- 9. If f(z) is a real valued function in a domain $D \subseteq \mathbb{C}$, then show that either f'(z) = 0 or f'(z) does not exist in D.
- 10. Let $f: G \to \mathbb{C}$ be differentiable at a point $z_0 \in G$, where G is an open set in \mathbb{C} , and let $g(z) = \overline{f(z)}$ for all $z \in G$. Show that $g: G \to \mathbb{C}$ is differentiable at z_0 iff $f'(z_0) = 0$.
- 11. Let Ω_1 and Ω_2 be nonempty open sets in \mathbb{C} . Let $f : \Omega_1 \to \mathbb{C}$ be continuous such that $f(\Omega_1) \subset \Omega_2$ and let $g : \Omega_2 \to \mathbb{C}$ be holomorphic such that $g'(z) \neq 0$ for all $z \in \Omega_2$. If $g \circ f : \Omega_1 \to \mathbb{C}$ is holomorphic, then show that f is holomorphic.
- 12. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} , and let $g(z) = \overline{f(z)}$ for all $z \in \Omega$. If $g: \Omega \to \mathbb{C}$ is analytic, then show that f is a constant function.
- 13. Let G be an open set in \mathbb{C} and let $G^* = \{\overline{z} : z \in G\}$. Show that G^* is open in \mathbb{C} . If $f: G \to \mathbb{C}$ is analytic and $g(z) = \overline{f(\overline{z})}$ for all $z \in G^*$, then show that $g: G^* \to \mathbb{C}$ is analytic and that $g'(z) = \overline{f'(\overline{z})}$ for all $z \in G^*$.
- 14. Let Ω be a nonempty subset of \mathbb{C} (considered to be \mathbb{R}^2 as a set). Show that a function $f : \Omega \to \mathbb{C}$ is differentiable as a function of two real variables at $z_0 \in \Omega^0$ iff there

exist $\varphi, \psi : \Omega \to \mathbb{C}$ such that both φ, ψ are continuous at z_0 and $f(z) - f(z_0) = (z - z_0)\varphi(z) + (\overline{z} - \overline{z}_0)\psi(z)$ for all $z \in \Omega$.

- 15. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If L is a line in \mathbb{C} and $f(\Omega) \subset L$, then show that f is a constant function.
- 16. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If P is the parabola in \mathbb{C} given by the equation $y = x^2$ and $f(\Omega) \subset P$, then show that f is a constant function.
- 17. Let $f: \Omega \to \mathbb{C}$ be an analytic function, where Ω is a domain in \mathbb{C} . If $f': \Omega \to \mathbb{C}$ is a constant function, then show that there exist $a, b \in \mathbb{C}$ such that f(z) = az + b for all $z \in \Omega$.
- 18. Let f = u + iv is an analytic function on the whole complex plane \mathbb{C} . If $u(x, y) = \phi(x)$ and $v(x, y) = \psi(y)$ prove that, for all $z \in \mathbb{C}$, f(z) = az + b for some $a, b \in \mathbb{C}$.
- 19. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If for each $z \in \Omega$, either f(z) = 0or f'(z) = 0, then show that f is a constant function.
- 20. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If for each $z \in \Omega$, $\operatorname{Re}(f(z)) = 0$ or $\operatorname{Im}(f(z)) = 0$, then show that $f: \Omega \to \mathbb{C}$ is a constant function.
- 21. For $z = x + iy \in \mathbb{C}$, classify all entire functions f(z) = u(x, y) + iv(x, y) that satisfy $u_y(x, y) = v_x(x, y)$ for each $x, y \in \mathbb{R}$.
- 22. For $z = x + iy \in \mathbb{C}$, find all the entire functions f(z) = u(x, y) + iv(x, y) satisfying 2u(x, y) + 3v(x, y) > 5 for each $x, y \in \mathbb{R}$.
- 23. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If $z_0 \in \Omega$ such that $f'(z_0) \neq 0$, then show that there exists $\delta > 0$ such that f is one-one on $B_{\delta}(z_0)$.
- 24. Let u and v be nonconstant harmonic functions on \mathbb{C} .
 - (a) If U(x, y) = u(x, -y), is U also harmonic?
 - (b) If v is a harmonic conjugate of u, is u a harmonic conjugate of v?
 - (c) Is *uv* always harmonic? If not, produce an example.
- 25. If v is a harmonic conjugate of u (u, v real valued), prove that the functions uv and $u^2 v^2$ are also harmonic.
- 26. What are all real valued harmonic functions u on D such that u^2 is also harmonic?
- 27. Find a harmonic conjugate, if it exists, of the following functions:

(a)
$$u(x,y) = 2xy$$

- (b) $u(r,\theta) = r^n \cos n\theta, n \in \mathbb{N}.$
- (c) $u(x,y) = x^2 y^2 + x + y \frac{y}{x^2 + y^2}$.

28. Let us define differential operators $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. Let f = u + iv be defined on an open set in \mathbb{C} . Show that:

(a) f satisfies C-R equations if and only if $\frac{\partial}{\partial z} f(z) = 0$.

- (b) If $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, then show that $\Delta f = 4 \frac{\partial^2}{\partial z \partial \bar{z}} f$.
- (c) Prove that the function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = \overline{z}^n$ is harmonic for all $n \in \mathbb{N}$.

29. Let
$$u(x,y) = \begin{cases} \operatorname{Im}\left(\frac{1}{(x+iy)^2}\right) & \text{if } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Examine whether $u : \mathbb{R}^2 \to \mathbb{R}$ is harmonic.

30. Does there exist an analytic function $f : G \to \mathbb{C}$ for some open set G in \mathbb{C} such that for all $z = x + iy \in G$,

(a) $\operatorname{Re}(f(z)) = x^2 - 2y$? (b) $\operatorname{Im}(f(z)) = x^3 - y^3$?

31. Determine all $v : \mathbb{R}^2 \to \mathbb{R}$ such that $f = u + iv : \mathbb{C} \to \mathbb{C}$ is analytic, where for all $(x, y) \in \mathbb{R}^2$,

(a)
$$u(x, y) = y^3 - 3x^2y$$
 (b) $u(x, y) = e^{-x}(x \sin y - y \cos y)$.
Also, express $f(z)$ in terms of $z \in \mathbb{C}$.

- 32. Determine all analytic functions $f = u + iv : \mathbb{C} \to \mathbb{C}$ such that $u(x, y) v(x, y) = e^x(\cos y \sin y)$ for all $(x, y) \in \mathbb{R}^2$.
- 33. Let $u : \Omega \to \mathbb{C}$ be a harmonic function, where Ω is a domain in \mathbb{C} . Show that $u_x iu_y : \Omega \to \mathbb{C}$ is analytic.
- 34. Let $u : \Omega \to \mathbb{R}$ and $v : \Omega \to \mathbb{R}$ be harmonic, where Ω is a domain in \mathbb{C} . Show that $(u_y v_x) + i(u_x + v_y) : \Omega \to \mathbb{C}$ is analytic.
- 35. Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function. Show that

(a)
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \operatorname{Re}(f(z))^2 = 2|f'(z)|^2$$

(b) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$
for all $z = x + iy \in \mathbb{C}$.

36. Determine the radius of convergence of each of the following power series. (a) $\sum_{n=1}^{\infty} n^{(-1)^n} z^n$ (b)

$$\sum_{n=0}^{\infty} z^{2^n} \qquad \text{(c)} \ \sum_{n=0}^{\infty} (1+\frac{1}{n})^{(-1)^n n^2} z^n \qquad \text{(d)} \ \sum_{n=0}^{\infty} \left(\frac{2+(-1)^n}{5+(-1)^{n+1}}\right)^n z^n$$

(e)
$$\sum_{n=0}^{\infty} a^{n^2} z^n, \text{ where } a \in \mathbb{C}.$$

- 37. For each $n \in \mathbb{N}$, let a_n be equal to the total number of (positive integer) divisors of n^{60} . Determine (with justification) the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n z^n$.
- 38. Determine all $z \in \mathbb{C}$ for which the following power series are convergent. (a) $\sum_{n=1}^{\infty} \frac{2^n}{n^2} (z-2-i)^n$ (b) $\sum_{n=0}^{\infty} 2^n (z-2)^n$ (c) $\sum_{n=0}^{\infty} \frac{z^{4n}}{4n+1}$ (d) $\sum_{n=0}^{\infty} \frac{(2z-i)^n}{3n+1}$
- 39. Show that the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$ is 1. Also, examine the convergence of the power series for z = 1, -1, and i.
- 40. State TRUE or FALSE with justification: There exists a power series $\sum_{n=0}^{\infty} a_n (z-1+2i)^n$ in \mathbb{C} which converges at z = -3 + i and diverges at z = -2 + 2i.

- 41. Show that the radius of convergence R of a power series $\sum_{n=0}^{\infty} a_n z^n$ in \mathbb{C} is given by $R = \sup\{|z| : z \in \mathbb{C}, a_n z^n \to 0\} = \sup\{|z| : z \in \mathbb{C}, \text{ the sequence } (a_n z^n) \text{ is bounded}\}.$
- 42. Let R_1 and R_2 be the radii of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$ respectively. If R is the radius of convergence of the power series $\sum_{n=0}^{\infty} (a_n + b_n) z^n$, then show that $R \ge \min\{R_1, R_2\}$.

Is it necessary that $R = \min\{R_1, R_2\}$? Justify. If $R_1 \neq R_2$, then show that $R = \min\{R_1, R_2\}$.

- 43. Let R_1 and R_2 be the radii of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$ respectively. If R is the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n b_n z^n$, then show that $R \ge R_1 R_2$. (It is assumed that $R_1 R_2$ is defined.) Is it necessary that $R = R_1 R_2$? Justify.
- 44. Let $a_n \in \mathbb{C} \setminus \{0\}$ for all $n \in \mathbb{N} \cup \{0\}$ and let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$. Is it necessary that the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{1}{a_n} z^n$ is $\frac{1}{R}$? Justify.
- 45. Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$. Determine the radius of convergence of each of the following power series. (a) $\sum_{n=0}^{\infty} a_n^2 z^n$ (b)

$$\sum_{n=0}^{\infty} 2^n a_n z_n \qquad \text{(c)} \quad \sum_{n=1}^{\infty} n^n a_n z^n$$
46. Examine whether
$$\left\{ \sum_{n=0}^{\infty} \frac{z^n}{n} : z \in \right\}$$

Examine whether
$$\left\{\sum_{n=1}^{\infty} \frac{z^n}{n} : z \in \mathbb{C}, \frac{1}{4} \le |z| \le \frac{3}{4}\right\}$$
 is a closed set in \mathbb{C} .

- 47. Examine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$ is uniformly convergent in \mathbb{C} . 48. State TRUE or FALSE with justification: If R > 0 is the radius of convergence of a
- 48. State TRUE or FALSE with justification: If R > 0 is the radius of convergence of a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, then the series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ cannot converge uniformly on $\{z \in \mathbb{C} : |z-z_0| < R\}$.
- 49. Show that $|1 (1 z)e^z| \le |z|^2$ for all $z \in \mathbb{D}$.
- 50. Let $f : \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = \begin{cases} e^{-\frac{1}{z^4}} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$ Show that the Cauchy-Riemann equations for f are satisfied at every point of \mathbb{R}^2 but

f is not continuous (and hence not differentiable) at 0.

- 51. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f'(z) = f(z) for all $z \in \mathbb{C}$ and f(0) = 1. Show that $f(z) = e^z$ for all $z \in \mathbb{C}$.
- 52. Let $f : \mathbb{C} \to \mathbb{C}$ be differentiable at 0 and f'(0) = 1. If f(z+w) = f(z)f(w) for all $z, w \in \mathbb{C}$, then show that $f(z) = e^z$ for all $z \in \mathbb{C}$.

53. Let $f: \Omega \to \mathbb{C}$ be analytic, where Ω is a domain in \mathbb{C} . If $g(z) = e^{f(z)}$ for all $z \in \Omega$ and if $g: \Omega \to \mathbb{C}$ is a constant function, then show that f is a constant function. If f is assumed to be only continuous, then does a similar result hold? Justify.

54. For all $z \in \mathbb{C}$, show that

- (a) $\sin(-z) = -\sin z$ and $\cos(-z) = \cos z$.
- (b) $\cos(\pi + z) = -\cos z$ and $\sin(\frac{\pi}{2} + z) = \cos z$.
- (c) $\overline{\sin z} = \sin \overline{z}$ and $\overline{\cos z} = \cos \overline{z}$.
- (d) $\sin 2z = 2 \sin z \cos z$ and $\cos 2z = \cos^2 z \sin^2 z$.
- (e) $\sin 3z = 3 \sin z 4 \sin^3 z$ and $\cos 3z = 4 \cos^3 z 3 \cos z$.
- (f) $|\sin z|^2 = \sin^2 x + \sinh^2 y$.
- (g) $|\cos z|^2 = \cos^2 x + \sinh^2 y$.
- (h) $|\sinh z|^2 = \sinh^2 x + \sin^2 y$.
- (i) $|\cosh z|^2 = \sinh^2 x + \cos^2 y$.
- 55. For all $z, w \in \mathbb{C}$, show that
 - (a) $\sin(z+w) = \sin z \cos w + \cos z \sin w$.
 - (b) $\cos(z+w) = \cos z \cos w \sin z \sin w$.
- 56. Show that $\{\sin z : z \in \mathbb{C}\} = \mathbb{C}$ and $\{\cos z : z \in \mathbb{C}\} = \mathbb{C}$.
- 57. Let $f(z) = \sin z$ and $g(z) = \cos z$ for all $z \in \mathbb{C}$. Determine all the periods of $f : \mathbb{C} \to \mathbb{C}$ and $g : \mathbb{C} \to \mathbb{C}$.
- 58. Show that $\{z \in \mathbb{C} : \cos z = 1\} = 2\pi\mathbb{Z}$ and $\{z \in \mathbb{C} : \sin z = 1\} = \frac{\pi}{2} + 2\pi\mathbb{Z}$.
- 59. Show that $\{z \in \mathbb{C} : \overline{\cos(iz)} = \cos(i\overline{z})\} = \mathbb{C}$ and $\{z \in \mathbb{C} : \overline{\sin(iz)} = \sin(i\overline{z})\} = \pi i\mathbb{Z}$.
- 60. State TRUE or FALSE with justification: If f is an entire function such that $|f(x)| \le 10$ and $|f(iy)| \le 10$ for all $x, y \in \mathbb{R}$, then there must exist $\lambda \in \mathbb{R}$ such that $|f(z)| \le \lambda$ for all $z \in \mathbb{C}$.
- 61. If $z \in \mathbb{D}$, then show that the series $\sum_{n=1}^{\infty} \sin(z^n)$ is absolutely convergent.
- 62. Let $f(z) = \begin{cases} |z|^2 \sin \frac{1}{|z|} & \text{if } z \in \mathbb{C} \setminus \{0\}, \\ 0 & \text{if } z = 0. \end{cases}$

Examine whether $f : \mathbb{C} \to \mathbb{C}$ is differentiable at 0.

- 63. Let $f : \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = \begin{cases} \frac{\sin z}{z} & \text{if } z \neq 0, \\ 1 & \text{if } z = 0. \end{cases}$ Show that f is an entire function.
- 64. Solve for $z \in \mathbb{C}$ the following equations.

(a) $e^z = 2i$ (b) $\cos^2 z = 4$ (c) $\tan z = i$

- 65. Let $f(z) = \tan z$ for all $z \in \Omega = \mathbb{C} \setminus \{(2n+1)\frac{\pi}{2} : n \in \mathbb{Z}\}$. Determine the range of the function $f: \Omega \to \mathbb{C}$.
- 66. Show that $\log\left(\frac{1}{z}\right) = -\log z$ for all $z \in \mathbb{C} \setminus \{0\}$. 67. Examine whether (a) $\operatorname{Log}(1+i)^2 = 2\operatorname{Log}(1+i)$ (b) $\operatorname{Log}(-1+i)^2 = 2\operatorname{Log}(-1+i)$ (c) $\log(i^2) = 2\log i$.
- 68. Let Ω_1 and Ω_2 be domains in \mathbb{C} such that $\Omega_1 \cap \Omega_2$ is connected. If there exists a branch of the logarithm on Ω_1 and there exists a branch of the logarithm on Ω_2 , then is it necessary that there exists a branch of the logarithm on $\Omega_1 \cup \Omega_2$? Justify.
- 69. If $z_1 = 1 + i$, $z_2 = 1 i$ and $z_3 = -1 i$, then examine whether $(z_1 z_2)^i = z_1^i z_2^i$ and $(z_2z_3)^i = z_2^i z_3^i$, where only principal values are considered.
- 70. Show that all the values of $(1-i)^{\sqrt{2}i}$ lie on a straight line in the complex plane.