MA547: Complex Analysis

(Assignment 2: Topology of the complex plane, and continuity)

January - April, 2025

- 1. For each subset of \mathbb{C} , determine if it is open, closed, or not, with justification:
 - (a) $\{z \in \mathbb{C} : Re(z) = 1 \text{ and } Im(z) \neq 4\}$
 - (b) $B(1,1) \cup B(2,\frac{1}{2}) \cup B(3,\frac{1}{2})$
 - (c) $\left\{ z \in \mathbb{C} : \left| \frac{z-1}{z+1} \right| = 2 \right\}$
 - (d) $\{z \in \mathbb{C} : \sin(Re(z)) < Im(z) < 1\}$.
- 2. For each of the following subsets of \mathbb{C} , determine their interior, exterior, and boundary:
 - (a) $\{z \in \mathbb{C} : |z| < 1 \text{ and } Im(z) \neq 0\} \cup \{z \in \mathbb{C} : |z| > 1 \text{ and } Im(z) = 0\}$
 - (b) $\left\{ r\left(\cos\left(\frac{1}{n}\right) + i\sin\left(\frac{1}{n}\right)\right) \in \mathbb{C} : r > 0, n \in \mathbb{N} \right\} \cup \left\{ z \in \mathbb{C} : Re(z) < 0 \right\}.$
- 3. Examine whether $\bigcup_{n=1}^{\infty} \{z \in \mathbb{C} : z^n = 1\}$ is open/closed in (a) \mathbb{C} (b) $\partial \mathbb{D}$.
- 4. Determine all the limit points in \mathbb{C} of the sets (a) $\left\{\frac{1}{m} + \frac{i}{n} : m, n \in \mathbb{N}\right\}$ (b) $\bigg\{x + \frac{i}{x} : x \in \mathbb{R}, \ x > 0\bigg\}.$
- 5. State TRUE or FALSÉ with justification: Every uncountable subset of $\mathbb C$ has a limit point in \mathbb{C} .
- 6. Show that $\{\cos n + i \sin n : n \in \mathbb{N}\}$ is dense in $\partial \mathbb{D}$.
- 7. State TRUE or FALSE with justification: If (z_n) is a sequence in \mathbb{C} such that (z_n) has no convergent subsequence, then it is necessary that $\lim_{n\to\infty} |z_n| = \infty$.
- 8. Let Ω be an open set in \mathbb{C} . Show that for each $n \in \mathbb{N}$, there exists a compact set K_n in \mathbb{C} such that $\Omega = \bigcup_{n=1}^{\infty} K_n$.
- 9. Let (z_n) be a sequence in \mathbb{C} and let $z \in \mathbb{C}$. Show that the series $\sum_{n=1}^{\infty} z_n$ converges with sum z iff both the series $\sum_{n=1}^{\infty} \operatorname{Re}(z_n)$ and $\sum_{n=1}^{\infty} \operatorname{Im}(z_n)$ converge with sums $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
- 10. If $z \in \mathbb{C}$ such that 1 < |z| < 2, then show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + z^2}$ is convergent.
- 11. If $z \in \mathbb{D}$, then show that the series $\sum_{n=1}^{\infty} \frac{z^{2n}}{2+z^n+z^{5n}}$ is convergent. 12. Let (z_n) be a sequence in \mathbb{C} such that $\operatorname{Re}(z_n) \ge 0$ for all $n \in \mathbb{N}$. If both the series $\sum_{n=1}^{\infty} z_n$ and $\sum_{n=1}^{\infty} z_n^2$ are convergent, then show that the series $\sum_{n=1}^{\infty} |z_n|^2$ is also convergent.
- 13. Let (z_n) be a sequence in \mathbb{C} such that $\sup_{n \in \mathbb{N}} |\operatorname{Arg}(z_n)| < \frac{\pi}{2}$. If the series $\sum_{n=1}^{\infty} z_n$ is convergent, then show that the series $\sum_{n=1}^{\infty} z_n$ is absolutely convergent.

- 14. If $z \in \mathbb{C} \setminus \{0\}$ such that $|\operatorname{Arg}(z)| \leq \frac{\pi}{4}$, then show that the series $\sum_{n=1}^{\infty} \frac{z}{(1+z^2)^n}$ is convergent.
- 15. If $z \in \mathbb{C} \setminus \mathbb{N}$, then show that the series $\sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{n}\right)$ is convergent.
- 16. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be absolutely convergent series in \mathbb{C} . If $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ for all $m \in \mathbb{N} \cup \{0\}$, then show that the series $\sum_{k=0}^{\infty} a_k$ is checkutally convergent.
- $n \in \mathbb{N} \cup \{0\}$, then show that the series $\sum_{n=0}^{\infty} c_n$ is absolutely convergent.
- 17. Examine whether the following subsets of \mathbb{C} are connected.
 - (a) $\{z \in \mathbb{C} : \operatorname{Re}(z), \operatorname{Im}(z) \in \mathbb{Q}\}$
 - (b) $\{z \in \mathbb{C} : \operatorname{Re}(z)\operatorname{Im}(z) > 0\}$
 - (c) $\{z \in \mathbb{C} : |z 1| \le 1\} \cup \{z \in \mathbb{C} : |z 1 + 2i| < 1\}$
 - (d) $\{z \in \mathbb{C} : \operatorname{Re}(z)^2 + \operatorname{Im}(z)^3 \in \mathbb{R} \setminus \mathbb{Q}\}$
 - (e) $\{z \in \mathbb{C} : |z| \le \sqrt{2}\} \cup \{z \in \mathbb{C} : |z 2 2i| \le \sqrt{2}\}$
 - (f) $\{z \in \mathbb{C} : |\operatorname{Re}(z)| < |\operatorname{Im}(z)| \}$
 - (g) $\mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Re}(z) \in \mathbb{Q}, \operatorname{Im}(z) \in \mathbb{Q}\}$
 - (h) $\left\{x + i \sin \frac{1}{x} : x \in (0, 1]\right\} \cup \left\{\frac{i}{3}\right\} \cup \left\{-\frac{i}{4}\right\}$
- 18. Show that the function $f : \mathbb{C} \to \mathbb{C}$, defined by $f(z) = \begin{cases} z \sin \frac{1}{z} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0, \end{cases}$ is not continuous at 0.
- 19. If $f : \mathbb{C} \to \mathbb{C}$ is continuous such that f(2z) = f(z) for all $z \in \mathbb{C}$, then show that f is a constant function.
- 20. State TRUE or FALSE with justification:
 - (a) There exists a continuous function $f : \mathbb{C} \to \mathbb{C}$ such that $f(\sin n) = \frac{n\pi}{2}$ for all $n \in \mathbb{N}$.
 - (b) If $f : \mathbb{C} \to \mathbb{C}$ is continuous and Ω is a bounded subset of \mathbb{C} , then $f(\Omega)$ must be a bounded subset of \mathbb{C} .
- 21. Let $f: K \to \mathbb{C}$ be a continuous function, where K is a compact set in \mathbb{C} . If $f(z) \neq 0$ for all $z \in K$, then show that there exists r > 0 such that $f(K) \subset \mathbb{C} \setminus B_r(0)$.
- 22. Let $f : \mathbb{C} \to \mathbb{C}$ be continuous and $\lim_{|z|\to\infty} f(z) = 0$. Show that f is bounded and that there exists $z_0 \in \mathbb{C}$ such that $|f(z)| \leq |f(z_0)|$ for all $z \in \mathbb{C}$.
- 23. Let $f: \Omega \to \mathbb{C}$ be continuous, where Ω is a domain in \mathbb{C} . If $|f(z)^2 1| < 1$ for all $z \in \Omega$, then show that either |f(z) 1| < 1 for all $z \in \Omega$ or |f(z) + 1| < 1 for all $z \in \Omega$.
- 24. Let Ω be a domain in \mathbb{C} . Let $f : \Omega \to \mathbb{C}$ and $g : \Omega \to \mathbb{C}$ be continuous such that $\{z \in \Omega : |f(z)| < |g(z)|\} \neq \emptyset$ and $\{z \in \Omega : |f(z)| > |g(z)|\} \neq \emptyset$. Show that $\{z \in \Omega : |f(z)| = |g(z)|\} \neq \emptyset$.

- 25. State TRUE or FALSE with justification: For every continuous function $f : \partial \mathbb{D} \to \mathbb{R}$, there exists $z \in \partial \mathbb{D}$ such that f(z) = f(-z).
- 26. Show that there is no continuous function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that $f(z)^2 = z$ for all $z \in \mathbb{C} \setminus \{0\}$.
- 27. State TRUE or FALSE with proper justification: An unbounded function $f : \mathbb{D} \to \mathbb{C}$ cannot be uniformly continuous (on \mathbb{D}).
- 28. Let $f(z) = \frac{z}{1+|z|}$ for all $z \in \mathbb{C}$. Show that $f : \mathbb{C} \to \mathbb{D}$ is a homeomorphism.