MA547: Complex Analysis

(Assignment 1: Complex numbers system) January - April, 2025

- 1. Show that $|z| \leq |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \leq \sqrt{2}|z|$ for all $z \in \mathbb{C}$.
- 2. If $z_1, z_2 \in \mathbb{C}$, then $|z_1 + z_2| \leq |z_1| + |z_2|$. Show that equality holds if and only if one of them is a nonnegative scalar multiple of the other.
- 3. If either $|z_1| = 1$ or $|z_2| = 1$, but not both, then prove that $\left|\frac{z_1 z_2}{1 \overline{z_1} z_2}\right| = 1$. What an exception must be made for the validity of the above equality when $|z_1| = |z_2| = 1$?
- 4. Show that the equation $z^4 + z + 5 = 0$ has no solution in the set $\{z \in \mathbb{C} : |z| < 1\}$.
- 5. If z and w are in \mathbb{C} such that $\operatorname{Im}(z) > 0$ and $\operatorname{Im}(w) > 0$, show that $|\frac{z-w}{z-\overline{w}}| < 1$.
- 6. When does $az + b\overline{z} + c = 0$ has exactly one solution?
- 7. Let $a, b, c \in \mathbb{C}$ such that $a \neq 0$ and $|a| \neq |c|$. Show that a root (in \mathbb{C}) of the equation $az^2 + bz + c = 0$ has modulus 1 iff $|\overline{a}b - \overline{b}c| = |a\overline{a} - c\overline{c}|$.
- 8. If $1 = z_0, z_1, \ldots, z_{n-1}$ are distinct n^{th} roots of unity, prove that

$$\prod_{j=1}^{n-1} (z - z_j) = \sum_{j=0}^{n-1} z^j.$$

9. Let $z, w \in \mathbb{C}$ and $\lambda \in \mathbb{R}$ with $\lambda > 0$. Show that $|z + w|^2 \leq (1 + \lambda)|z|^2 + (1 + \frac{1}{\lambda})|w|^2$.

- 10. Let $z, w \in \mathbb{C}$ such that $(1+|z|^2)w = (1+|w|^2)z$. Show that z = w or $z\overline{w} = 1$. 11. Let $z \in \mathbb{C} \setminus \mathbb{R}$ such that $\frac{1+z+z^2}{1-z+z^2} \in \mathbb{R}$. Show that |z| = 1.
- 12. If $z, w \in \mathbb{D}$, then show that $|(1-|z|^2)w + (1-|w|^2)z| < |1-z^2w^2|$.
- 13. If $z, w \in \mathbb{C}$, then show that $|1 + z| + |1 + w| + |1 + zw| \ge 2$.
- 14. Let $z \in \mathbb{C} \setminus \{1\}$ such that $z^n = 1$, where $n \in \mathbb{N}$. Show that $1 + 2z + \dots + nz^{n-1} = \frac{n}{z-1}$. 15. Let $n \in \mathbb{N}$ and let $a_0, a_1, \ldots, a_n \in \mathbb{R}$ such that $a_0 \ge a_1 \ge \cdots \ge a_{n-1} \ge a_n > 0$. Show
- that $|a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n| > 0$ for all $z \in \mathbb{D}$. 16. Let $z \in \mathbb{C} \setminus \{0\}$ such that $\left|z^3 + \frac{1}{z^3}\right| \le 2$. Show that $\left|z + \frac{1}{z}\right| \le 2$.
- 17. Show that all the roots of the equation $(z+1)^3 + z^3 = 0$ lie on the line $\operatorname{Re}(z) + \frac{1}{2} = 0$.
- 18. Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$. Show that all the roots $z \in \mathbb{C}$ of the equation $\left(\frac{1+iz}{1-iz}\right)^n =$ a + ib are real iff $a^2 + b^2 = 1$.
- 19. Let $f(x) = \frac{1+ix}{1-ix}$ for all $x \in \mathbb{R}$. Show that $f : \mathbb{R} \to \mathbb{C}$ is one-one. Also, determine the range of f.
- 20. Let $a \in \mathbb{R}$ such that |a| < 1 and let $f(z) = \frac{z-a}{1-\overline{a}z}$ for all $z \in \mathbb{D}$. Show that $f : \mathbb{D} \to \mathbb{D}$ is one-one and onto.
- 21. Let $a, b \in \mathbb{C}$ and let $T(z) = az + b\overline{z}$ for all $z \in \mathbb{C}$. Show that $T : \mathbb{C} \to \mathbb{C}$ is one-one and onto iff $|a| \neq |b|$.

- 22. Let $z_1, z_2 \in \mathbb{C}$ such that $\operatorname{Re}(z_1) > 0$ and $\operatorname{Re}(z_2) > 0$. Show that $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$.
- 23. Let $z \in \mathbb{C}$ such that $\operatorname{Re}(z^n) \geq 0$ for all $n \in \mathbb{N}$. Show that z is a non-negative real number.
- 24. If $d(z, w) = \frac{2|z w|}{\sqrt{1 + |z|^2}\sqrt{1 + |w|^2}}$ for all $z, w \in \mathbb{C}$, then show that d is a metric on \mathbb{C} .