DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional analysis Instructor: Rajesh Srivastava Time duration: **Two hours**

Mid semester exam September 24, 2013 Maximum Marks: 30

- 1. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a convex function which vanishes at most at one point in \mathbb{R}^n and satisfies $f(\alpha x) = |\alpha| f(x)$, for each $(\alpha, x) \in \mathbb{R} \times \mathbb{R}^n$. Show that f is a norm on \mathbb{R}^n .
- 2. Let B[0,1] be the space of all bounded functions on [0,1]. Show that the closed unit ball $D = \{f \in B[0,1] : \|f\|_{\infty} \le 1\}$ is **not** compact in $(B[0,1], \|\cdot\|_{\infty})$.
- 3. Prove that $(c_{oo}(\mathbb{N}), \|\cdot\|_{\infty})$ is a dense subspace of $(c_o(\mathbb{N}), \|\cdot\|_{\infty})$. Deduce that the space $(c_o(\mathbb{N}), \|\cdot\|_{\infty})$ is separable. **2+2**
- 4. Let $1 . Prove that <math>l^p(\mathbb{N})$ is a **proper** dense subspace of $l^q(\mathbb{N})$.
- 5. Let $X = \{f \in C^1[0,1] : f(0) = 0\}$. For $f \in X$, define $||f||_1 = ||f||_\infty + ||f'||_\infty$. Prove that $||f||_1 \le 2||f'||_\infty$.
- 6. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let X be the space of all analytic function on D which are continuous on the closure \overline{D} . Define $||f||_{\infty} = \sup \{|f(e^{i\theta})| : 0 \le \theta \le 2\pi\}$. Suppose $f, f_n \in X$ and $\lim_{n \to \infty} ||f_n - f||_{\infty} = 0$. Prove that $\lim_{n \to \infty} ||f'_n - f'||_{\infty} = 0$. 3
- 7. Show that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_2$ are **not** equivalent on C[0,1].
- 8. Denote $X = \left\{ f: f \in BV[0,1] \text{ and } \lim_{x \to 0^+} f(x) = 0 = f(0) \right\}$. For $f \in X$, define $\|f\| = V_0^1(f)$. Prove that $\|f\| = 0$ if and only if $f \equiv 0$. Further, prove that every Cauchy sequence in $(X, \|\cdot\|)$ converges to a point in X. (**Hint:** Use $f_n \xrightarrow{\mathbf{p} \cdot \mathbf{w}} f \Rightarrow V(f_n, P) \to V(f, P)$.) **2+3**
- 9. Let $1 and <math>\Omega \subset \mathbb{R}$ is a measurable set with $m(\Omega) < \infty$. For $f \in L^q(\Omega)$, prove that

$$||f||_p \le (m(\Omega))^{\left(\frac{1}{p} - \frac{1}{q}\right)} ||f||_q$$

3

 $|\mathbf{3}|$

END