DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis
Mid Semester Exam
November 23, 2019
Maximum Marks: 30
N.B. Answer without proper justification will attract zero mark.

1. (a) Suppose T is a continuous injective operator on a Hilbert space H. Does it imply that $\operatorname{dim} R\left(T^{*}\right) \geq 1$?
(b) Let X be a Banach space and $f_{n} \rightarrow 0$ in the week star topology of X^{*}. Is it necessary that f_{n} is bounded in X^{*} ?
(c) Let M be proper dense subspace of normed linear space X. Does it imply that every continuous linear functional on M has a unique Hahn Banach extension to X ?
(d) Let $T: l^{2} \rightarrow l^{2}$ be defined by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right)$. Whether T is a self-adjoint operator?
2. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of a Hilbert space H and $y=\left(y_{1}, y_{2}, \ldots\right) \in l^{1}$. Define a linear map $T: H \rightarrow H$ by $T(x)=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle y_{n} e_{n}$. Show that T is continuous. Find the norm of T.
3. Let M be a proper dense subspace of a real inner product space X. If $T: X \rightarrow X$ is a bounded self-adjoint operator that satisfying $\langle T x, x\rangle=0$ and $\langle T x, y\rangle \in \mathbb{R}$ for all $x, y \in M$. Show that $T=0$.
4. Let $M=\left\{(x, y) \in \mathbb{R}^{2}: 2 x-3 y=0\right\}$. Define a linear functional f on M by $f(x, y)=x$. Find all possible Hahn Banach extensions of f to $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$.
5. Let X be an inner product space. For any three points $x, y, z \in X$. Show that $\|x-y\|^{2}+\|x-z\|^{2}=2\left(\left\|x-\frac{1}{2}(y+z)\right\|^{2}+\left\|\frac{1}{2}(y-z)\right\|^{2}\right)$.
6. Let $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be a linear map defined by $T(f)(x)=\int_{0}^{x} e^{i x y} f(y) d y$. Show that $\|T\| \leq 1$. Find the adjoint of T.
7. Let C be an open subset of a normed linear space X and $0 \in C$. For $x \in X$, define $p(x)=\inf \left\{t>0: t^{-1} x \in C\right\}$. Show that there exists $M>0$ such that $p(x) \leq M\|x\|$ for all $x \in X$.
8. Let c_{o} be the space of all sequences on \mathbb{C} that converges to 0 . Show that the dual of $\left(c_{o},\|\cdot\|_{\infty}\right)$ is isomorphic to $\left(l^{1},\|\cdot\|_{1}\right)$
9. Let H be complex Hilbert space and $T \in B(H, H)$. Show that T is a normal operator if and only if $\left\|T^{*} x\right\|=\|T x\|$.
10. Let X and Y be two Banach spaces and $T_{n}, T \in B(X, Y)$. If $f \circ T_{n}(x) \rightarrow f \circ T(x)$ for all $f \in Y^{*}$ and for all $x \in X$, then show that sup $\left\|T_{n}\right\|<\infty$.
11. Let M be a proper closed subspace of a Hilbert space H. Define $\pi: H \rightarrow H / M$ by $\pi(x) \|=x+M$. Show that $\|\pi\|=1$. Further, if there exists $0 \neq x \in H$ such that $\|\pi(x)=\| x \|$, then there exists a unique $0 \neq z \in M$ such that $\|z\|^{2}=2 \operatorname{Re}\langle x, z\rangle .6$
12. Let $E=\left\{e_{\alpha}: \alpha \in I\right\}$ be an orthonormal basis of a Hilbert space H. For each $x \in H$, show that the set $\left\{e_{\alpha} \in E:\left|\left\langle x, e_{\alpha}\right\rangle\right|^{2}>\left(\frac{2}{n}-e^{-n}\right)\|x\|\right\}$ is a finite set for each fixed $n \in \mathbb{N}$.
