DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam November 23, 2019 Maximum Marks: 30

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Suppose T is a continuous injective operator on a Hilbert space H. Does it imply that dim $R(T^*) \ge 1$?
 - (b) Let X be a Banach space and $f_n \to 0$ in the week star topology of X^* . Is it necessary that f_n is bounded in X^* ?
 - (c) Let M be proper dense subspace of normed linear space X. Does it imply that every continuous linear functional on M has a unique Hahn Banach extension to X?
 - (d) Let $T: l^2 \to l^2$ be defined by $T(x_1, x_2, x_3, \ldots) = (0, x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots)$. Whether T is a self-adjoint operator?
- 2. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis of a Hilbert space H and $y = (y_1, y_2, \ldots) \in l^1$. Define a linear map $T : H \to H$ by $T(x) = \sum_{n=1}^{\infty} \langle x, e_n \rangle y_n e_n$. Show that T is continuous. Find the norm of T.
- 3. Let M be a proper dense subspace of a real inner product space X. If $T : X \to X$ is a bounded self-adjoint operator that satisfying $\langle Tx, x \rangle = 0$ and $\langle Tx, y \rangle \in \mathbb{R}$ for all $x, y \in M$. Show that T = 0.
- 4. Let $M = \{(x, y) \in \mathbb{R}^2 : 2x 3y = 0\}$. Define a linear functional f on M by f(x, y) = x. Find all possible Hahn Banach extensions of f to $(\mathbb{R}^2, \|\cdot\|_2)$.
- 5. Let X be an inner product space. For any three points $x, y, z \in X$. Show that $||x y||^2 + ||x z||^2 = 2 \left(||x \frac{1}{2}(y + z)||^2 + ||\frac{1}{2}(y z)||^2 \right)$.

6. Let $T: L^2[0,1] \to L^2[0,1]$ be a linear map defined by $T(f)(x) = \int_0^x e^{ixy} f(y) dy$. Show that $||T|| \le 1$. Find the adjoint of T.

- 7. Let C be an open subset of a normed linear space X and $0 \in C$. For $x \in X$, define $p(x) = \inf\{t > 0 : t^{-1}x \in C\}$. Show that there exists M > 0 such that $p(x) \leq M \|x\|$ for all $x \in X$.
- 8. Let c_o be the space of all sequences on \mathbb{C} that converges to 0. Show that the dual of $(c_o, \|\cdot\|_{\infty})$ is isomorphic to $(l^1, \|\cdot\|_1)$ 4
- 9. Let *H* be complex Hilbert space and $T \in B(H, H)$. Show that *T* is a normal operator if and only if $||T^*x|| = ||Tx||$.

- 10. Let X and Y be two Banach spaces and $T_n, T \in B(X, Y)$. If $f \circ T_n(x) \to f \circ T(x)$ for all $f \in Y^*$ and for all $x \in X$, then show that $\sup ||T_n|| < \infty$.
- 11. Let M be a proper closed subspace of a Hilbert space H. Define $\pi : H \to H/M$ by $\pi(x) \parallel = x + M$. Show that $\lVert \pi \rVert = 1$. Further, if there exists $0 \neq x \in H$ such that $\lVert \pi(x) = \lVert x \rVert$, then there exists a unique $0 \neq z \in M$ such that $\lVert z \rVert^2 = 2 \operatorname{Re}\langle x, z \rangle$. 6
- 12. Let $E = \{e_{\alpha} : \alpha \in I\}$ be an orthonormal basis of a Hilbert space H. For each $x \in H$, show that the set $\{e_{\alpha} \in E : |\langle x, e_{\alpha} \rangle|^2 > (\frac{2}{n} e^{-n}) ||x||\}$ is a finite set for each fixed $n \in \mathbb{N}$.

END