DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis	Endsem Exam
Instructor: Rajesh Srivastava	November 25, 2013
Time duration: Three hours	Maximum Marks: 45

- 1. Let K be a compact subset of an infinite dimensional normed linear space X. Prove or disprove that interior of K is empty. 3
- 2. Let M be a closed subspace of a normed linear space X such that M and X/M both are complete. Show that X is also complete. 4
- 3. Suppose $\{x_1, x_2, \ldots\}$ is a sequence in a Banach space X such that each $x \in X$ has a unique representation $x = \sum_{n=1}^{\infty} a_n x_n$, where $a_n \in \mathbb{C}$. Show that X is separable. **5**
- 4. For $f \in C^{1}[0,1]$, define its norm by $||f|| = \max\{||f||_{\infty}, ||f'||_{\infty}\}$. Show that the linear map $T : (C^{1}[0,1], ||.||) \to (C[0,1], ||.||_{\infty})$ given by T(f) = f' is continuous and ||T|| = 1.
- 5. Let X = C[0,1] and $M = \{f \in X : f(0) = 0\}$. Give an example of a linear functional T on $(X, \|.\|_{\infty})$ such that $T(M) = \{0\}$ and $\|T\| = 1$.
- 6. Let $M = \{(x_1, x_2, \ldots) \in l^1 : x_1 + x_2 = 0\}$ and define $f_o : M \to \mathbb{C}$ by $f_o(x_1, x_2, \ldots) = 2x_1$. Find a norm preserving extension of f_o to l^1 .
- 7. Let $T_n : l^1 \to l^1$ be a sequence of linear transformations such that for eachlinebreak[4] $x = (x_1, \ldots, x_n, x_{n+1}, \ldots) \in l^1, T_n(x) = (x_{n+1}, x_{n+2}, \ldots).$ Show that $||T_n(x)|| \to 0$ but $||T_n|| = 1.$
- 8. Let X^* be the dual space of a normed linear space X. Let $x, x_n \in X$ such that $x_n \xrightarrow{\text{weakly}} x$. If $f, f_n \in X^*$ satisfy $||f_n f|| \to 0$, then prove that $f_n(x_n) \to f(x)$. 3
- 9. Let f_n be a sequence of linear functionals on $(c_o, \|.\|_{\infty})$ such that for each $x = (x_1, x_2, \ldots,) \in c_o, f_n(x) = \frac{1}{n+1} \sum_{j=1}^n x_j$. Prove that $\lim f_n(x) = 0$, but $\lim \|f_n\| = 1$. 3
- 10. Let $T: l^2 \to l^2$ be a linear map such that $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$. Find the adjoint T^* of T.
- 11. Let $M = \{(y_1, y_2, \ldots) \in l^2 : 2y_1 y_2 = 0\}$ and $x_o = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$. Find $y_o \in M$ such that $\inf_{y \in M} ||x_o y||_2 = ||x_o y_o||_2$.
- 12. Let $\{e_n\}$ be an orthonormal basis for a Hilbert space H and $(\alpha_1, \alpha_2, \ldots) \in l^{\infty}$. Define a linear map $T : H \to H$ by $T(x) = \sum_{n=1}^{\infty} \langle x, e_n \rangle \alpha_n e_n$. Prove that T is continuous and $||T|| = \sup |\alpha_n|$. 2+2