DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA543: Functional Analysis
Instructor: Rajesh Srivastava
Endsem Exam
Time duration: Three hours
November 25, 2013
Maximum Marks: 45

1. Let K be a compact subset of an infinite dimensional normed linear space X. Prove or disprove that interior of K is empty.
2. Let M be a closed subspace of a normed linear space X such that M and X / M both are complete. Show that X is also complete.
3. Suppose $\left\{x_{1}, x_{2}, \ldots\right\}$ is a sequence in a Banach space X such that each $x \in X$ has a unique representation $x=\sum_{n=1}^{\infty} a_{n} x_{n}$, where $a_{n} \in \mathbb{C}$. Show that X is separable. 5
4. For $f \in C^{1}[0,1]$, define its norm by $\|f\|=\max \left\{\|f\|_{\infty},\left\|f^{\prime}\right\|_{\infty}\right\}$. Show that the linear map $T:\left(C^{1}[0,1],\|\cdot\|\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ given by $T(f)=f^{\prime}$ is continuous and $\|T\|=1$.
5. Let $X=C[0,1]$ and $M=\{f \in X: f(0)=0\}$. Give an example of a linear functional T on $\left(X,\|\cdot\|_{\infty}\right)$ such that $T(M)=\{0\}$ and $\|T\|=1$.
6. Let $M=\left\{\left(x_{1}, x_{2}, \ldots\right) \in l^{1}: x_{1}+x_{2}=0\right\}$ and define $f_{o}: M \rightarrow \mathbb{C}$ by $f_{o}\left(x_{1}, x_{2}, \ldots\right)=2 x_{1}$. Find a norm preserving extension of f_{o} to l^{1}.
7. Let $T_{n}: l^{1} \rightarrow l^{1}$ be a sequence of linear transformations such that for eachlinebreak[4] $x=\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right) \in l^{1}, T_{n}(x)=\left(x_{n+1}, x_{n+2}, \ldots\right)$. Show that $\left\|T_{n}(x)\right\| \rightarrow 0$ but $\left\|T_{n}\right\|=1$.
8. Let X^{*} be the dual space of a normed linear space X. Let $x, x_{n} \in X$ such that $x_{n} \xrightarrow{\text { weakly }} x$. If $f, f_{n} \in X^{*}$ satisfy $\left\|f_{n}-f\right\| \rightarrow 0$, then prove that $f_{n}\left(x_{n}\right) \rightarrow f(x) . \sqrt{3}$
9. Let f_{n} be a sequence of linear functionals on $\left(c_{o},\|.\|_{\infty}\right)$ such that for each $x=$ $\left(x_{1}, x_{2} \ldots,\right) \in c_{o}, f_{n}(x)=\frac{1}{n+1} \sum_{j=1}^{n} x_{j}$. Prove that $\lim f_{n}(x)=0$, but $\lim \left\|f_{n}\right\|=1.4$
10. Let $T: l^{2} \rightarrow l^{2}$ be a linear map such that $T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. Find the adjoint T^{*} of T.
11. Let $M=\left\{\left(y_{1}, y_{2}, \ldots\right) \in l^{2}: 2 y_{1}-y_{2}=0\right\}$ and $x_{o}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$. Find $y_{o} \in M$ such that $\inf _{y \in M}\left\|x_{o}-y\right\|_{2}=\left\|x_{o}-y_{o}\right\|_{2}$.
12. Let $\left\{e_{n}\right\}$ be an orthonormal basis for a Hilbert space H and $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in l^{\infty}$. Define a linear map $T: H \rightarrow H$ by $T(x)=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle \alpha_{n} e_{n}$. Prove that T is continuous and $\|T\|=\sup \left|\alpha_{n}\right|$.
$2+2$
