DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis
Quiz I
Instructor: Rajesh Srivastava
Time duration: One hour

October 16, 2020
Maximum Marks: 15
N.B. Answer without proper justification will attract zero mark.

1. Let $\alpha>1$ and $x_{n}=\frac{\left(\alpha+\frac{1}{n}\right)^{\frac{1}{n}}-\sin n^{2}}{n}$. Determine all possible p with $1 \leq p \leq \infty$ for which $\left(x_{n}\right) \in l^{p}$.
2. Let $C^{2}([-1,1])$ be the space of all twice continuously differential function f on $[-1,1]$ such that $f(0)=f^{\prime}(0)=0$. Given $f \in \mathbb{C}^{2}[-1,1]$, define a function $\|\cdot\|$ $C^{2}([-1,1])$ by $\|f\|=\sum_{i=0}^{2}\left\|f^{(i)}\right\|_{\infty}$. Show that $\|f\| \leq \frac{7}{2}\left\|f^{(2)}\right\|_{\infty}$.
3. Let $\left(a_{n}\right)$ be sequence of non-negative real numbers. For each $x=\left(x_{1}, x_{2}, \cdots\right) \in l^{p}$ with $1 \leq p<\infty$, define a function $\|\cdot\|$ on l^{p} by $\|x\|=\left(\sum_{n=1}^{\infty} a_{n}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}$. Determine all possible sequence $\left(a_{n}\right)$ for which $\|\cdot\|$ becomes a norm on l^{p}.
4. Let $X=L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Given $f \in X$, define a function $\|\cdot\|$ on X by $\|f\|=$ $\min \left\{2\|f\|_{1},\|f\|_{2}\right\}$. Prove/disporve that $\|\cdot\|$ is norm on X.
5. Let Y be the space of all continuous function f on \mathbb{R} such that for each $\epsilon>0$ there exists a bounded open set O in \mathbb{R} satisfying $|f(x)|<\epsilon$, whenever $x \in \mathbb{R} \backslash O$. Show that each $f \in Y$ is bounded. Prove/disprove that $\left(Y,\|\cdot\|_{\infty}\right)$ is a Banach space.
