DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: One hour Quiz I October 16, 2020 Maximum Marks: 15

N.B. Answer without proper justification will attract zero mark.

- 1. Let $\alpha > 1$ and $x_n = \frac{\left(\alpha + \frac{1}{n}\right)^{\frac{1}{n}} \sin n^2}{n}$. Determine all possible p with $1 \le p \le \infty$ for which $(x_n) \in l^p$.
- 2. Let $C^2([-1,1])$ be the space of all twice continuously differential function f on [-1,1] such that f(0) = f'(0) = 0. Given $f \in \mathbb{C}^2[-1,1]$, define a function $\|\cdot\|$ $C^2([-1,1])$ by $\|f\| = \sum_{i=0}^2 \|f^{(i)}\|_{\infty}$. Show that $\|f\| \leq \frac{7}{2} \|f^{(2)}\|_{\infty}$. 3
- 3. Let (a_n) be sequence of non-negative real numbers. For each $x = (x_1, x_2, \dots) \in l^p$ with $1 \le p < \infty$, define a function $\|\cdot\|$ on l^p by $\|x\| = \left(\sum_{n=1}^{\infty} a_n |x_n|^p\right)^{\frac{1}{p}}$. Determine all possible sequence (a_n) for which $\|\cdot\|$ becomes a norm on l^p .
- 4. Let $X = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Given $f \in X$, define a function $\|\cdot\|$ on X by $\|f\| = \min\{2\|f\|_1, \|f\|_2\}$. Prove/disporve that $\|\cdot\|$ is norm on X.
- 5. Let Y be the space of all continuous function f on \mathbb{R} such that for each $\epsilon > 0$ there exists a bounded open set O in \mathbb{R} satisfying $|f(x)| < \epsilon$, whenever $x \in \mathbb{R} \setminus O$. Show that each $f \in Y$ is bounded. Prove/disprove that $(Y, \|\cdot\|_{\infty})$ is a Banach space. **3**

END