DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: Two hours Quiz I September 5, 2019 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) What is closure of the set $\{(x, \sin \frac{1}{x}) : x \neq 0, x \in \mathbb{R}\}$ in \mathbb{R}^2 ? 1
 - (b) Suppose M is a dense subspace of a normed linear space X. If M is separable, does it imply X separable?
 - (c) Whether the set $\{f \in C[0,1] : ||f||_1 < 1\}$ is bounded in normed linear space $(C[0,1], ||\cdot||_{\infty})$?
- 2. Let X be a normed linear space. Define $f: X \to \mathbb{R}$ by $f(x) = \frac{1}{1+\|x\|^2}$. Show that f is uniformly continuous on X.
- 3. For $f \in C^1[0,1]$, define $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Show that $f_n(t) = \frac{e^{-nt^2}}{n} \to 0$ in the space $(C^1[0,1], ||\cdot||)$.
- 4. Suppose $\alpha > 0$. For $f \in L^{\infty}[0,1]$, write $||f|| = \min\{||f||_{\infty}, \alpha ||f||_1\}$. Then $||\cdot||$ is a norm on $L^{\infty}[0,1]$ if and only if $\alpha \leq 1$.

END