DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: One hour Quiz IV November 30, 2020 Maximum Marks: 15

N.B. Answer without proper justification will attract zero mark.

- 1. Suppose M be a nowhere dense closed subset of a Hilbert space H. Does it imply $(H \smallsetminus M)^{\perp} = \{0\}$?
- 2. If any pair of points x and y in an inner product space X satisfies $||x+\alpha y|| = ||x-\alpha y||$ for each α in the unit circle of \mathbb{C} , then x must be orthogonal to y.
- 3. Consider the sequence $f_n \in L^2[0,1]$ defined by

$$f_n(t) = \begin{cases} \sqrt{\frac{n}{1+t}} & \text{if } 0 \le t < 1/n, \\ 0 & \text{if } 1/n \le t \le 1. \end{cases}$$

Show that $\lim_{n\to\infty} ||f_n||_2 = 1$ and f_n converges to 0 in the weak topology of $L^2[0,1]$. 3

- 4. Let $M = \{(x_1, x_2, \ldots) \in \ell^2\}$: $x_1 + 2x_2 = 0\}$. Define a linear functional f on M by $f(x_1, x_2, \ldots) = \frac{3}{2}x_1$. Find a norm preserving extension of f to ℓ^2 .
- 5. Let $Y = \text{span}\{(1,0,0), (0,1,0)\}, y_o = (1,2,1) \text{ and } Y_1 = \{y + \alpha y_0 : y \in Y, \alpha \in \mathbb{C}\}.$ Define a function on Y_1 by $f(y + \alpha y_o) = \alpha$. Show that f is a continuous linear functional on Y_1 and ||f|| = 1.
- 6. For $f \in C^1[0,1]$, define a norm on $C^1[0,1]$ by $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Define a linear functional φ on $C^1[0,1]$ by $\varphi(f) = f'(0)$. Show that $\varphi \in (C^1[0,1], ||\cdot||)^*$ but $\varphi \notin (C^1[0,1], ||\cdot||_1)^*$ 3

END