DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis

Instructor: Rajesh Srivastava

Time duration: One hour

Quiz II

November 5, 2020

Maximum Marks: 15

N.B. Answer without proper justification will attract zero mark.

- 1. Let c_o be the space all sequences of complex numbers, which are converging to zero. For $(x_n) + c_o \in \ell^{\infty}/c_o$, define $\|(x_n) + c_o\| = \lim_{n \to \infty} \inf |x_n|$. What is the dimension of the Hamel basis of the quotient space $(\ell^{\infty}/c_o, \|\cdot\|)$?
- 2. Let X and Y be two normed linear spaces. Suppose $T \in B(X,Y)$ be onto. Define $\tilde{T}: X/\ker T : \to Y$ by $\tilde{T}(x + \ker T) = T(x)$. Does it imply that \tilde{T} is a bounded linear transformation?
- 3. For $(x_n) \in \ell^2$, let $\|(x_n)\| = \sup_{n \in \mathbb{N}} |\sum_{i=1}^n \frac{x_i}{i}|$. Show that $\|\cdot\|$ is norm on ℓ^2 . Prove/disprove that $(\ell^2, \|\cdot\|)$ is a Banach space.
- 4. Let X = C[0,1]. Suppose $g \in X$ has only finitely many zero in [0,1]. For $f \in X$, let $||f|| = \sup |g(t)f(t)|$. Show that $(X, ||\cdot||)$ is normed linear space but need not be a Banach space. Examine for $(X, ||\cdot||)$ to be a separable space.
- 5. Let $C_c(\mathbb{R})$ be the class of all compactly supported continuous functions on \mathbb{R} . Find all p with $1 \leq p \leq \infty$ such that T given by $T(f) = \int_{-\infty}^{\infty} f(t)dt$ is continuous linear functional $(C_c(\mathbb{R}), \|\cdot\|_p)$.

END