DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: 1.5 hours

Quiz II November 17, 2013 Maximum Marks: 10

 $|\mathbf{1}|$

2

N.B. Answer without proper justification will attract zero mark.

- 1. Let $\mathbb{P}(\mathbb{R})$ be the space of all polynomials with coefficients in \mathbb{R} . Does there exist a norm $\|.\|$ on $\mathbb{P}(\mathbb{R})$ such that $(\mathbb{P}(\mathbb{R}), \|.\|)$ is a Banach space? Justify your answer. $|\mathbf{1}|$
- 2. Can the quotient space l^{∞}/c_o be separable? Justify your answer.
- 3. Show that l^{∞} has no Schauder basis.
- 3. Show that l^{\sim} has no behavior. 4. Defin a linear map $T: l^1 \to l^1$ by $T(x_1, x_2, \ldots) = \left(2x_1 + x_2, \frac{x_2 + x_3}{2}, \frac{x_3 + x_4}{2^2}, \ldots\right).$
- 5. Let (a_n) be a sequence such that the linear map $T: l^1 \to l^2$ defined by $T(x_1, x_2, \ldots) =$ (a_1x_1, a_2x_2, \ldots) is continuous. Show that (a_n) is bounded. $\mathbf{2}$
- 6. Let ϕ be a measurable measurable function on \mathbb{R} such that for each $f \in L^{\infty}(\mathbb{R})$, $\phi f \in L^{\infty}(\mathbb{R})$. Define a linear map $T: L^{\infty}(\mathbb{R}) \to L^{\infty}(\mathbb{R})$ by $T(f) = \phi f$. Show that T is continuous. $\mathbf{2}$

END