DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz I September 8, 2013 Maximum Marks: 10

N.B. Each question carries **2 marks**. You can attempt at most **FIVE** question out of **SEVEN**.

- 1. Find the linear map $T : \mathbb{C}^2 \to \mathbb{C}^2$ whose range space is span $\{(1,1), (1,i)\}$.
- 2. Let $0 . Let <math>X = \{x = (x_1, x_2, ...) : x_j \in \mathbb{C}\}$. Define $||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}$. Show that $(X, ||.||_p)$ is **not** a normed linear space.
- 3. Show that the space $c_o(\mathbb{N})$ is a closed and proper subspace of $l^{\infty}(\mathbb{N})$.
- 4. Let M be a proper closed subspace of a normed linear space X. Define a map $f : X \to \mathbb{R}$ by $f(x) = \inf_{m \in M} ||x + m||$. Show that f is an uniformly continuous function on X.
- 5. Let X = C[0, 1]. For $f \in X$, define $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}$. Show that $(X, ||.||_2)$ is **not** a Banach space.
- 6. Let $\{E_k : k = 1, 2, ..., n\}$ be a collection of disjoint measurable sets in \mathbb{R} , having each of them has finite measure. Let $f = \sum_{k=1}^{n} \alpha_k \chi_{E_k}, \ \alpha_k \in \mathbb{C}$. For $0 , evaluate the integral <math>\int_{\mathbb{T}} |f|^p dm$.
- 7. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of measurable functions given by $f_n(t) = \frac{n \sin t}{1 + n^2 \sqrt{t}}$. Evaluate $\lim_{n \to \infty} \int_{[0,1]} f_n dm$.

END