DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA541: Real Analysis Instructor: Rajesh Srivastava Time duration: 02 hours Quiz II November 8, 2017 Maximum Marks: 12

1

 $\mathbf{2}$

N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist a function $f : \mathbb{R}^2 \to \mathbb{R}$ which is differentiable at only (0,0)? 1

(b) Let
$$f(x,y) = \begin{cases} 1 & \text{if } x^2 + y^2 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Find all those points in \mathbb{R}^2 such that f is discontinuous.

- (c) Is it possible that a function on \mathbb{R}^2 has local minima at (0,0) along all direction passing through (0,0) but has no local minimia in any open neighbourhood of (0,0)?
- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = \begin{cases} 0 & \text{if } xy \neq 0; \\ 1 & \text{otherwise.} \end{cases}$ Show that $f_x(0, 0)$ and $f_y(0, 0)$ both exist but f is not continuous at (0, 0).
- 3. Find all possible directional derivative $D_v(0,0)$ for the function $f(x,y) = \begin{cases} \frac{\sin xy}{xy} & \text{if } xy \neq 0; \\ 0 & \text{otherwise.} \end{cases}$ Whether f is differentiable at (0,0)?
- 4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function which is given by $f(x_1, x_2) = \cos(x_1 + x_2)$. For $x, y \in \mathbb{R}^2$, show that

$$|f(x) - f(y)| \le \sqrt{2} ||x - y||.$$
 2

5. For a continuous function $g: [-1,1] \to \mathbb{R}$, define $f(x,y) = \int_{x}^{y} g(t)dt$. Show that f is differentiable at (0,0). Whether f is continuously differentiable at (0,0)? **2+1**

END