DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA541: Real Analysis
Quiz II
Instructor: Rajesh Srivastava
Time duration: 02 hours
November 8, 2017
Maximum Marks: 12
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is differentiable at only $(0,0)$?
(b) Let $f(x, y)= \begin{cases}1 & \text { if } x^{2}+y^{2}=1 \text {; } \\ 0 & \text { otherwise. }\end{cases}$

Find all those points in \mathbb{R}^{2} such that f is discontinuous.
(c) Is it possible that a function on \mathbb{R}^{2} has local minima at $(0,0)$ along all direction passing through $(0,0)$ but has no local minimia in any open neighbourhood of $(0,0)$?
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)= \begin{cases}0 & \text { if } x y \neq 0 ; \\ 1 & \text { otherwise }\end{cases}$

Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist but f is not continuous at $(0,0)$.
3. Find all possible directional derivative $D_{v}(0,0)$ for the function $f(x, y)= \begin{cases}\frac{\sin x y}{x y} & \text { if } x y \neq 0 ; \\ 0 & \text { otherwise } .\end{cases}$
Whether f is differentiable at $(0,0)$?
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function which is given by $f\left(x_{1}, x_{2}\right)=\cos \left(x_{1}+x_{2}\right)$. For $x, y \in \mathbb{R}^{2}$, show that

$$
|f(x)-f(y)| \leq \sqrt{2}\|x-y\|
$$

5. For a continuous function $g:[-1,1] \rightarrow \mathbb{R}$, define $f(x, y)=\int_{x}^{y} g(t) d t$. Show that f is differentiable at $(0,0)$. Whether f is continuously differentiable at $(0,0)$?
