DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA541: Real Analysis
Instructor: Rajesh Srivastava
Time duration: 02 hours

Mid Semester Exam
September 20, 2017
Maximum Marks: 30
N.B. Answer without proper justification will attract zero mark.

1. (a) What is the cardinality of the set $\{f: \mathbb{R} \rightarrow \mathbb{R}, f$ is nowhere continuous $\}$?
(b) Whether the function $f(x)=\frac{\sin x}{x}$ is uniformly continuous on $(0,1)$?
(c) If f and g are non-constant uniformly continuous functions on \mathbb{R}. Is it necessary that f and g are bounded for $f g$ to be uniformly continuous?
2. For a monotone increasing function $f:[a, b] \rightarrow \mathbb{R}$, define $g(x)=\sup \{f(y): y<x\}$. If f has limit at c, then show that $f(c)=g(c)$.
3. Let f be a continuous function on \mathbb{R} such that $\inf f(x)=f\left(x_{o}\right)$ and $\sup f(x)=f\left(y_{o}\right)$. Show that for any x_{1} and x_{2} in \mathbb{R}, there exists $c \in \mathbb{R}$ such that $f(c)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that f takes integral values on the set of rationals. Prove that f is constant.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that for any sequence $x_{n} \in \mathbb{R}$, the sequences $f\left(x_{2 n}\right), f\left(x_{2 n-1}\right)$ and $f\left(x_{5 n}\right)$ are convergent. Show that f is continuous except on a countable set. 4
6. For non-empty sets A and B in \mathbb{R}, let $f: A \cup B \rightarrow \mathbb{R}$ be such that $\left.f\right|_{A}$ and $\left.f\right|_{B}$ are uniformly continuous. Can f uniformly continuous on $A \cup B$ if $A \cap B=\emptyset$?
7. Let $f:(0, \infty) \rightarrow[0, \infty)$ be a continuous function satisfying $f(x+y) \leq \frac{f(x)+f(y)}{3}$. Show that f is bounded and hence deduce that f is uniformly continuous.
8. For $x \in(0,1)$, show that the series $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ is point-wise convergent. Whether the given series is uniformly convergent on $(0,1)$?
9. Does there exist a sequence of differential functions f_{n} on $(0, \infty)$ such that f_{n}^{\prime} is uniformly convergent on $(0, \infty)$ but f_{n} is nowhere point-wise convergent?
10. Show that the polynomial $p_{n}(x)=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\cdots+(-1)^{n} \frac{x^{n}}{n}$ has exactly one real root if n is odd. For n even, show that there exists $\delta>0$ such that $\frac{1}{2} x^{n} \leq p_{n}(x) \leq \frac{3}{2} x^{n}$, whenever $|x|>\delta$ and hence deduce that p_{n} has no real root.
