DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA541: Real Analysis
Instructor: Rajesh Srivastava
Time duration: Three hours
End Semester Exam
November 26, 2017
Maximum Marks: 45
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist an unbounded set A in (\mathbb{R}, u) such that $\operatorname{diam}\left(A^{\circ}\right)=1$?
(b) Is it possible for every metric d on \mathbb{R}, each closed and bounded set in $((\mathbb{R}, d)$ is compact?
(c) Let $1<p<q<\infty$. Whether $l^{p} \cap l^{q}$ is a dense subspace of l^{q} ?
(d) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be satisfying $\|f(x)\| \leq\|x\|_{2}^{2}$. Does f differentiable at $\mathbf{0}$?
(e) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous function. Does it imply that f sends every bounded set to a bounded set?
2. Using Baire category theorem, show that the open interval $(0,1)$ is uncountable.
3. Show that $X=\left\{f \in C[0,1]: \int_{0}^{1} f(t) d t=0\right\}$ is a closed subspace of $\left(C[0,1],\|\cdot\|_{\infty}\right)$. Whether the space X is a finite dimensional?
4. Let $X \neq \emptyset$ and (X, d) be metric space. Show that (X, d) is complete if and only if $\left(X, \frac{d}{1+d}\right)$ is complete. Does every bounded set in $\left(X, \frac{d}{1+d}\right)$ is bounded in $(X, d) ? \mathbf{2 + 1}$
5. Let (X, d) be a metric space. For $A \subseteq X$, write $\delta(A)=\sup _{x, y \in A} d(x, y)$. Show that any subset $A \subseteq X$ satisfies $\delta(A)=\delta(\bar{A})$.
6. For $x \in[0,1]$, define $f_{n}(x)=\frac{x}{1+n x}$. Show that $A=\left\{f_{n}: n \in \mathbb{N}\right\}$ is an equicontinuous set in $\left(C[0,1],\|\cdot\|_{\infty}\right)$. Whether the set A is compact in $\left(C[0,1],\|\cdot\|_{\infty}\right)$?
7. Let $X=\{f: \mathbb{R} \rightarrow \mathbb{R}, f$ is bounded $\}$ and $Y=\{f: \mathbb{R} \rightarrow \mathbb{R}, f$ is continuous and $\left.\lim _{|x| \rightarrow \infty} f(x)=0\right\}$. Show that $\left(X,\|\cdot\|_{\infty}\right)$ is complete. Further, show that $\left(Y,\|\cdot\|_{\infty}\right)$ is a closed subspace of $\left(X,\|\cdot\|_{\infty}\right)$.
8. Let K and F be two non-empty subsets of a metric space (X, d). If K is compact and F closed, then show that $\operatorname{dist}(K, F)>0$, whenever $K \cap F=\emptyset$.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)= \begin{cases}1 & \text { if } y^{2}<x<2 y^{2}, \\ 0 & \text { otherwise. }\end{cases}$

Find all those $v \in S^{1}$ such that $D_{v} f(0,0)$ exists. Does f continuous at $(0,0) ? \sqrt{\mathbf{2}+\mathbf{1}}$
10. Show that equation $x^{2}+y e^{x}-\sin (x y)=0$ can be solved for y in some neighborhood of $(0,0)$ but cannot be solved for x in any neighborhood of $(0,0)$.
11. For $(x, y) \in \mathbb{R}^{2}$, let $A(x, y)=(3 x, 4 y)$. Show that $\sup _{x^{2}+y^{2}=1}\|A(x, y)\|_{2}=4$.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Prove that the necessary condition for f has minimum on the curve $y=x+x^{2}$ at $(0,0)$ is $f_{x}(0,0)+f_{y}(0,0)=0$.
13. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y)=\left(x-e^{-y}, y-e^{x}\right)$. Show that f is locally invertible at $(0,0)$. Find $\left(f^{-1}\right)^{\prime}(0,0)$.
$2+1$
14. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1}-map satisfying $f(0,0)=0$ and $f_{x}(0,0)=1$. For $(x, y) \in \mathbb{R}^{2}$, let $g(x, y)=(f(x, y), y)$. Show that g is injective in some neighborhood of $(0,0)$. Does f injective in any neighborhood of $(0,0)$?

