DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA541: Real Analysis Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam November 26, 2017 Maximum Marks: 45

1

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist an unbounded set A in (\mathbb{R}, u) such that diam $(A^\circ) = 1$?
 - (b) Is it possible for every metric d on \mathbb{R} , each closed and bounded set in $((\mathbb{R}, d)$ is compact?
 - (c) Let $1 . Whether <math>l^p \cap l^q$ is a dense subspace of l^q ?
 - (d) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be satisfying $||f(x)|| \le ||x||_2^2$. Does f differentiable at **0**?
 - (e) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuous function. Does it imply that f sends every bounded set to a bounded set? 1
- 2. Using Baire category theorem, show that the open interval (0,1) is uncountable. 2
- 3. Show that $X = \{f \in C[0,1] : \int_0^1 f(t)dt = 0\}$ is a closed subspace of $(C[0,1], \|.\|_{\infty})$. Whether the space X is a finite dimensional? 1+2
- 4. Let $X \neq \emptyset$ and (X, d) be metric space. Show that (X, d) is complete if and only if $\left(X, \frac{d}{1+d}\right)$ is complete. Does every bounded set in $\left(X, \frac{d}{1+d}\right)$ is bounded in (X, d)? **2+1**
- 5. Let (X, d) be a metric space. For $A \subseteq X$, write $\delta(A) = \sup_{x,y \in A} d(x, y)$. Show that any subset $A \subseteq X$ satisfies $\delta(A) = \delta(\overline{A})$.
- 6. For $x \in [0, 1]$, define $f_n(x) = \frac{x}{1+nx}$. Show that $A = \{f_n : n \in \mathbb{N}\}$ is an equicontinuous set in $(C[0, 1], \|.\|_{\infty})$. Whether the set A is compact in $(C[0, 1], \|.\|_{\infty})$? **2+1**
- 7. Let $X = \{f : \mathbb{R} \to \mathbb{R}, f \text{ is bounded}\}$ and $Y = \{f : \mathbb{R} \to \mathbb{R}, f \text{ is continuous and} \lim_{\|x\|\to\infty} f(x) = 0\}$. Show that $(X, \|.\|_{\infty})$ is complete. Further, show that $(Y, \|.\|_{\infty})$ is a closed subspace of $(X, \|.\|_{\infty})$. **2+2**
- 8. Let K and F be two non-empty subsets of a metric space (X, d). If K is compact and F closed, then show that dist(K, F) > 0, whenever $K \cap F = \emptyset$.
- 9. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} 1 & \text{if } y^2 < x < 2y^2, \\ 0 & \text{otherwise.} \end{cases}$ Find all those $v \in S^1$ such that $D_v f(0, 0)$ exists. Does f continuous at (0, 0)? **2+1**
- 10. Show that equation $x^2 + ye^x \sin(xy) = 0$ can be solved for y in some neighborhood of (0,0) but cannot be solved for x in any neighborhood of (0,0). 3

11. For
$$(x, y) \in \mathbb{R}^2$$
, let $A(x, y) = (3x, 4y)$. Show that $\sup_{x^2 + y^2 = 1} ||A(x, y)||_2 = 4.$ 1+2

- 12. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Prove that the necessary condition for f has minimum on the curve $y = x + x^2$ at (0,0) is $f_x(0,0) + f_y(0,0) = 0$. 3
- 13. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x, y) = (x e^{-y}, y e^x)$. Show that f is locally invertible at (0, 0). Find $(f^{-1})'(0, 0)$.
- 14. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 -map satisfying f(0,0) = 0 and $f_x(0,0) = 1$. For $(x,y) \in \mathbb{R}^2$, let g(x,y) = (f(x,y), y). Show that g is injective in some neighborhood of (0,0). Does f injective in any neighborhood of (0,0)?

END