DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam February 28, 2014 Maximum Marks: 30

 $\mathbf{2}$

1. Let $f(x,y) = \frac{x^m y^n}{(x^2 + y^2)^p}$; if $x^2 + y^2 \neq 0$ and f(0,0) = 0. Find condition on (m,n,p) for which f is continuous at (0,0). Further, find condition for the function f to be bounded on \mathbb{R}^2 .

2. Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 be map $f(x, y) = \begin{cases} \sqrt{x^2 + y^2} \sin\left(\frac{y^2}{x - y}\right) & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$

Show that f is continuous at (0,0). Does f differentiable at (0,0)?

- 3. Let $u = (1,0,0), v = \frac{1}{\sqrt{2}}(1,1,0)$ and $w = \frac{1}{\sqrt{3}}(1,1,1)$. Suppose $f : \mathbb{R}^3 \to \mathbb{R}$ be differentiable at **0**. If $D_u(\mathbf{0}) = 1, D_v(\mathbf{0}) = 2$ and $D_w(\mathbf{0}) = -1$. Then find $f'(\mathbf{0})$. **3**
- 4. Let Ω be an open subset of \mathbb{R}^n . Let $\varphi : \Omega \to \mathbb{R}^n$ be continuous at $x_0 \in \Omega$. Suppose $\psi : \Omega \to \mathbb{R}$ is map satisfying $\psi(x+h) \psi(x) = \varphi(x+h) \cdot h$, for all $x \in \Omega$. Then show that ψ is continuously differentiable at x_0 .
- 5. Let φ , $\psi : \mathbb{R} \to \mathbb{R}$ be twice differentiable. Suppose $f(x, y) = \varphi(x^2 + y^2) + \psi(x^2 y^2)$. Show that $f_{xy}(x, y) = f_{yx}(x, y)$.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ and $F : \mathbb{R}^2 \to \mathbb{R}$ be differentiable maps. Suppose $F_y \neq 0$ and F(x, f(x)) = 0. Show that $f'(x) = -\frac{F_x(x, y)}{F_y(x, y)}$, where y = f(x). 2
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a map given by $f(x) = x^3 + x + \cos x$. Show that f is one-one and onto. Find the points where f^{-1} is differentiable. 4
- 8. Let $A \in GL(\mathbb{R}^n)$ and $\alpha \geq 2$. If $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfies $||f(x)|| \leq k ||x||^{\alpha}$, for some k > 0. Show that the map g = f + A is continuously differentiable at **0** and g is invertible in the neighborhood of **0**.
- 9. Show that the system of equations xy 1 = 0 and $y^2 + z^2 1 = 0$ can be solved for x and y in terms of z near $(2, \frac{1}{2}, \frac{\sqrt{3}}{2})$ as $x = \varphi(z)$ and $y = \psi(z)$. Further, find the values of $\varphi'(\frac{\sqrt{3}}{2})$ and $\psi'(\frac{\sqrt{3}}{2})$.
- 10. Let $z = y + x \sin z$. Show that there exists unique function φ such that $z = \varphi(x, y)$ on an open set U containing (0,0). Further, prove that φ has Taylor's series expansion in a neighborhood of (0,0) as $\varphi(x, y) = y + 2xy + \cdots$.

END