DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA224: Real Analysis
Instructor: Rajesh Srivastava
Time duration: Two hours

Mid Semester Exam
February 28, 2014
Maximum Marks: 30

1. Let $f(x, y)=\frac{x^{m} y^{n}}{\left(x^{2}+y^{2}\right)^{p}} ;$ if $x^{2}+y^{2} \neq 0$ and $f(0,0)=0$. Find condition on (m, n, p) for which f is continuous at $(0,0)$. Further, find condition for the function f to be bounded on \mathbb{R}^{2}.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be map $f(x, y)=\left\{\begin{array}{cl}\sqrt{x^{2}+y^{2}} \sin \left(\frac{y^{2}}{x-y}\right) & \text { if } x \neq y, \\ 0 & \text { if } x=y .\end{array}\right.$

Show that f is continuous at $(0,0)$. Does f differentiable at $(0,0)$?
3. Let $u=(1,0,0), v=\frac{1}{\sqrt{2}}(1,1,0)$ and $w=\frac{1}{\sqrt{3}}(1,1,1)$. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{0}$. If $D_{u}(\mathbf{0})=1, D_{v}(\mathbf{0})=2$ and $D_{w}(\mathbf{0})=-1$. Then find $f^{\prime}(\mathbf{0}) . \mathbf{3}$
4. Let Ω be an open subset of \mathbb{R}^{n}. Let $\varphi: \Omega \rightarrow \mathbb{R}^{n}$ be continuous at $x_{0} \in \Omega$. Suppose $\psi: \Omega \rightarrow \mathbb{R}$ is map satisfying $\psi(x+h)-\psi(x)=\varphi(x+h) \cdot h$, for all $x \in \Omega$. Then show that ψ is continuously differentiable at x_{0}.
5. Let $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable. Suppose $f(x, y)=\varphi\left(x^{2}+y^{2}\right)+\psi\left(x^{2}-y^{2}\right)$. Show that $f_{x y}(x, y)=f_{y x}(x, y)$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable maps. Suppose $F_{y} \neq 0$ and $F(x, f(x))=0$. Show that $f^{\prime}(x)=-\frac{F_{x}(x, y)}{F_{y}(x, y)}$, where $y=f(x)$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map given by $f(x)=x^{3}+x+\cos x$. Show that f is one-one and onto. Find the points where f^{-1} is differentiable.
8. Let $A \in G L\left(\mathbb{R}^{n}\right)$ and $\alpha \geq 2$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $\|f(x)\| \leq k\|x\|^{\alpha}$, for some $k>0$. Show that the map $g=f+A$ is continuously differentiable at $\mathbf{0}$ and g is invertible in the neighborhood of $\mathbf{0}$.
9. Show that the system of equations $x y-1=0$ and $y^{2}+z^{2}-1=0$ can be solved for x and y in terms of z near $\left(2, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ as $x=\varphi(z)$ and $y=\psi(z)$. Further, find the values of $\varphi^{\prime}\left(\frac{\sqrt{3}}{2}\right)$ and $\psi^{\prime}\left(\frac{\sqrt{3}}{2}\right)$.
10. Let $z=y+x \sin z$. Show that there exists unique function φ such that $z=\varphi(x, y)$ on an open set U containing $(0,0)$. Further, prove that φ has Taylor's series expansion in a neighborhood of $(0,0)$ as $\varphi(x, y)=y+2 x y+\cdots$.

