DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz I February 12, 2018 Maximum Marks: 10

1

|2|

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a countable family of closed sets in \mathbb{R} whose union is open? (b) Let $A = \{(x, \cos \frac{1}{x}) : x \neq 0, x \in \mathbb{R}\}$. What is the interior of A? 1
- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function given by $f(x, y) = \begin{cases} 1 & \text{if } y > 0 \text{ and } 0 < x < y^2, \\ 0 & \text{otherwise.} \end{cases}$ Examine the continuity of f at (0, 0).
- 3. Let $A : \mathbb{R}^2 \to \mathbb{R}$ be the linear transformation defined by A(x, y) = 3x + 4y. Show that ||A|| = 5.
- 4. Let $g : [a,b] \to \mathbb{R}^2$ be defined by $g(t) = (at^3, 2b(1-t^2))$. Using appropriate mean value theorem (MTV), show that

$$||g(b) - g(a)||_2 \le (b - a)\sqrt{9a^2b^4 + 16b^4}.$$

5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be function such that $f \circ g$ is differentiable at t = 0 for all functions $g : \mathbb{R} \to \mathbb{R}^2$ with g(0) = (0, 0). Show that directional derivatives $D_{\mathbf{v}}f(0, 0)$ exist for all $\mathbf{v} \in \mathbb{R}^2$ with $\|\mathbf{v}\|_2 = 1$.

END