DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz II April 16, 2018 Maximum Marks: 11

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a set $A \subset (\mathbb{R}, u)$ such that $\delta(A^o \cup \{0\}) = 0$ but $\delta((\bar{A})^o) = 1$? Where δ stands for diameter.
 - (b) Whether the function f defined by $f(x) = e^{x^2}$ is uniformly continuous on \mathbb{R} ? 1
 - (c) Let l^{∞} be the space of all bounded sequences in \mathbb{R} . For $x, y \in l^{\infty}$, does $d(x, y) = \min\{1, \limsup |x_n y_n|\}$ define a metric on l^{∞} ?
- 2. Let c_o be the space of all sequences in \mathbb{R} which converges to zero. For $x \in c_o$, define $f_n(x) = \frac{e^{-n}}{n+1} \sum_{j=1}^n x_j$. Show that $\lim_{n \to \infty} f_n(x) = 0$. 2
- 3. Suppose f is a continuous function on \mathbb{R} that satisfies $|f(x) f(y)| \ge 2|x y|$ for all $x, y \in \mathbb{R}$. Show that $f(\mathbb{R})$ is complete in (\mathbb{R}, u) .
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be such that its derivative f' is bounded. Define $f_n(t) = f\left(t + \frac{1}{n}\right)$. Show that the sequence f_n converges uniformly to f.
- 5. Show that $A = \{f \in C[0,1] : ||f||_1 < 1\}$ is an unbounded subset of the normed linear space $(C[0,1], ||\cdot||_{\infty})$.

END