DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis
Quiz I
Instructor: Rajesh Srivastava
Time duration: 1.5 hours
February 14, 2014
Maximum Marks: 10
N.B. Answer without proper justification will attract zero mark.

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be function given by $f(x, y)=\left\{\begin{array}{cl}\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$

Show that all the first order partial derivatives of f exist at $(0,0)$ but f is not differentiable at $(0,0)$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be map $f(x, y)=\left\{\begin{array}{cl}(x+y) \log \left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$

Show that f is continuous at $(0,0)$. Find all possible directions \mathbf{v} in which the directional derivative $D_{\mathbf{v}} f(0,0)$ exist.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be map defined by $f(x, y)=\left\{\begin{array}{cl}e^{-\frac{1}{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$ Whether f has Taylor's series expansion at $(0,0)$. Justify your answer.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be function given by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sin \left(x_{1}+x_{2}+\cdots+x_{n}\right)$. For $x, y \in \mathbb{R}^{n}$, show that

$$
|f(x)-f(y)| \leq \sqrt{n}\|x-y\| .
$$

