DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA224: Real Analysis
MidSem
Instructor: Rajesh Srivastava
March 1, 2018
Time duration: 02 hours
Maximum Marks: 30
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that $f\left(e^{-n^{2}}\right)=\left(n, \frac{1}{n}\right)$ for all $n \in \mathbb{N}$?
(b) Let $f:[1, \infty) \rightarrow[1, \infty)$ be defined by $f(x)=x+\frac{1}{x}$. Whether f is a contraction map?
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Find the necessary condition for $f\left(x, x^{2}+2 x\right)$ has minimum at 0 .
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f_{x}(0,0)=0$. Does there exist some $\delta>0$ such that $f(x, 0)$ is continuous on $(-\delta, \delta)$?
4. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is satisfying $f(r x)=r^{\frac{3}{2}} f(x)$ for all $(x, r) \in \mathbb{R}^{n} \times(0, \infty)$. Whether f is differentiable at $\mathbf{0}$.
5. Let Ω be an open subset of \mathbb{R}^{n}. Suppose $f: \Omega \rightarrow \mathbb{R}^{n}$ is a continuous function that satisfies $\left\|f\left(x_{o}\right)\right\|>0$ for some $x_{o} \in \Omega$. Show that there exists an open ball B centered at x_{o} such that $\|f(x)\|>\frac{\left\|f\left(x_{o}\right)\right\|}{2}$ for all $x \in B$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function that satisfies $f(x, y)>0$ for all $(x, y) \in \mathbb{Q} \times \mathbb{R}$. Show that $f(x, y) \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$.
7. Show that there exists a linear transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that the strict inequality $\left\|A^{2}\right\|<\|A\|^{2}$ holds.
8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be such that $f^{2}=f \circ f$ is a contraction map. Show that f has a unique fixed point.
9. Show that equation $x^{2}+y z-\cos (x z)=0$ can be solved for x in some neighborhood of $(1,1,0)$. Whether it can be solved for y in a neighborhood of $(1,1,0)$?
10. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuously differentiable with $f(0,0)=0$. Find the condition under which $f(f(x, y), y)=0$ can be solved for y in some neighborhood of $(0,0)$. 4
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and $f^{\prime}(0) \neq 0$. Show that the function $g(x, y)=(f(x), x f(x)-y)$ is locally invertible in some neighborhood of $(0,0)$. Give an example of f (with justification) for which g is globally invertible.
