DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis Instructor: Rajesh Srivastava Time duration: 02 hours MidSem March 1, 2018 Maximum Marks: 30

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a continuous function $f : \mathbb{R} \to \mathbb{R}^2$ such that $f(e^{-n^2}) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$?
 - (b) Let $f : [1, \infty) \to [1, \infty)$ be defined by $f(x) = x + \frac{1}{x}$. Whether f is a contraction map?
- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Find the necessary condition for $f(x, x^2 + 2x)$ has minimum at 0.
- 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that $f_x(0,0) = 0$. Does there exist some $\delta > 0$ such that f(x,0) is continuous on $(-\delta,\delta)$?
- 4. Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is satisfying $f(rx) = r^{\frac{3}{2}}f(x)$ for all $(x, r) \in \mathbb{R}^n \times (0, \infty)$. Whether f is differentiable at **0**.
- 5. Let Ω be an open subset of \mathbb{R}^n . Suppose $f : \Omega \to \mathbb{R}^n$ is a continuous function that satisfies $||f(x_o)|| > 0$ for some $x_o \in \Omega$. Show that there exists an open ball B centered at x_o such that $||f(x)|| > \frac{||f(x_o)||}{2}$ for all $x \in B$.
- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a continuous function that satisfies f(x, y) > 0 for all $(x, y) \in \mathbb{Q} \times \mathbb{R}$. Show that $f(x, y) \ge 0$ for all $(x, y) \in \mathbb{R}^2$.
- 7. Show that there exists a linear transformation $A : \mathbb{R}^2 \to \mathbb{R}^2$ such that the strict inequality $||A^2|| < ||A||^2$ holds. 3
- 8. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be such that $f^2 = f \circ f$ is a contraction map. Show that f has a unique fixed point. 3
- 9. Show that equation $x^2 + yz \cos(xz) = 0$ can be solved for x in some neighborhood of (1, 1, 0). Whether it can be solved for y in a neighborhood of (1, 1, 0)? **3**
- 10. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable with f(0,0) = 0. Find the condition under which f(f(x,y),y) = 0 can be solved for y in some neighborhood of (0,0).
- 11. Let $f : \mathbb{R} \to \mathbb{R}$ be continuously differentiable and $f'(0) \neq 0$. Show that the function g(x, y) = (f(x), xf(x) y) is locally invertible in some neighborhood of (0, 0). Give an example of f (with justification) for which g is globally invertible.