DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis Instructor: Rajesh Srivastava Time duration: 03 hours End Semester Exam May 3, 2018 Maximum Marks: 45

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist am unbounded open set $A \subset \mathbb{R}$ such that $m(A) < \infty$?
 - (b) Let *E* be a non-measurable set in \mathbb{R} . Is $\bigcup_{x \in \mathbb{R}} (E+x)$ Lebesgue measurable? **1**
 - (c) Let F be a closed set in \mathbb{R} with m(F) = 0. Does it imply that $Int(F) = \emptyset$? 1
 - (d) Does there exist two non-empty disjoint sets A and B in \mathbb{R} such that $\inf\{|x-y|: x \in A \text{ and } y \in B\} = 0$?
- 2. Let $f : \mathbb{R} \to [0, \infty]$ be such that $m^* \{ x \in \mathbb{R} : f(x) \ge 2^n \} < \frac{1}{2^n}$, whenever $n \in \mathbb{N}$. Show that $\{ x \in \mathbb{R} : f(x) = \infty \}$ is Lebesgue measurable. 3
- 3. (a) Let D be a dense subset of R. For each x ∈ R, show that there exists an increasing sequence x_n ∈ D such that x_n → x.
 (b) Further, deduce that f : R → R
 is a Lebesgue measurable function if and only if {x ∈ R : f(x) > r} is a Lebesgue measurable set for each r ∈ D.
- 4. (a) Let F_n be a sequence of closed sets in \mathbb{R} such that $F_n \subset (n, n+1]$ and $F_n \cap F_m = \emptyset$, whenever $m \neq n$. Show that $F = \bigcup_{n=1}^{\infty} F_n$ is a closed set in \mathbb{R} . 3

(b) Let $E = \bigcup_{n=1}^{\infty} E_n$, where $E_n \in M$ and $E_n \cap E_m = \emptyset$, whenever $m \neq n$. If $m^*(E) < \infty$, then prove that for each $\epsilon > 0$, there exist open set O and closed set F in \mathbb{R} such that $F \subset E \subset O$ and $m(O \smallsetminus F) < \epsilon$.

- 5. Let $E \subset (0,1)$ be such that $E = \bigcup_{n=2}^{\infty} \left\{ \left(\frac{1}{n-1}, \frac{1}{n}\right) \cap E \right\}$. If E is Lebesgue measurable, then show that $\lim_{n \to \infty} m\left\{ \left(\frac{1}{n}, \frac{1}{n-1}\right) \cap E \right\} = 0.$ 3
- 6. Let $f : (X, d) \to \mathbb{R}$ be a continuous function. Show that $\{x \in X : f(x) \neq 0\}$ is an open set in the metric space (X, d).
- 7. Let c_{oo} denote the space of all real sequences having only finitely many non-zero terms. Show that $(c_{oo}, \|\cdot\|_{\infty})$ is not an open subset of $(l^1, \|\cdot\|_1)$.
- 8. For $n \in \mathbb{N}$, define $f_n(t) = te^{-nt^2}$. Show that f_n is a convergent sequence in the space $(C[0,1], \|\cdot\|_{\infty})$.

9. For $n \in \mathbb{N}$, write $E = \bigcup_{n=1}^{\infty} \left[n, n + \frac{1}{n^{3/2}} \right]$. Show that $m(E) < \infty$ and $m(E^2) = \infty$, where $E^2 = \{x^2 : x \in E\}.$ 3

10. Let C be the Cantor's ternary set. Define $f : [0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \in C \setminus \{0\}, \\ x & \text{otherwise.} \end{cases}$ Evaluate the Lebesgue integral $\int_{[0,1]} f dm$. 3

- 11. Let $f : [0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0, \\ 0 & \text{otherwise.} \end{cases}$ Show that $\int_{[0,1]} f dm < \infty.$ **1+3**
- 12. Let $\varphi : (\mathbb{R}, M, m) \to [0, \infty]$ be a Lebesgue measurable simple function. Define a set function $\nu : M \to [0, \infty]$ by $\nu(E) = \int_E \varphi dm$. Show that $\nu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \nu(E_n)$, whenever E_n is a sequence of pairwise disjoint sets in M.

END