DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA224: Real Analysis
Instructor: Rajesh Srivastava
Time duration: 03 hours

End Semester Exam
May 3, 2018
Maximum Marks: 45
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist am unbounded open set $A \subset \mathbb{R}$ such that $m(A)<\infty$?
(b) Let E be a non-measurable set in \mathbb{R}. Is $\bigcup_{x \in \mathbb{R}}(E+x)$ Lebesgue measurable?
(c) Let F be a closed set in \mathbb{R} with $m(F)=0$. Does it imply that $\operatorname{Int}(F)=\emptyset$?
(d) Does there exist two non-empty disjoint sets A and B in \mathbb{R} such that $\inf \{|x-y|$: $x \in A$ and $y \in B\}=0$?
2. Let $f: \mathbb{R} \rightarrow[0, \infty]$ be such that $m^{*}\left\{x \in \mathbb{R}: f(x) \geq 2^{n}\right\}<\frac{1}{2^{n}}$, whenever $n \in \mathbb{N}$. Show that $\{x \in \mathbb{R}: f(x)=\infty\}$ is Lebesgue measurable.
3. (a) Let D be a dense subset of \mathbb{R}. For each $x \in \mathbb{R}$, show that there exists an increasing sequence $x_{n} \in D$ such that $x_{n} \rightarrow x$.
(b) Further, deduce that $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ is a Lebesgue measurable function if and only if $\{x \in \mathbb{R}: f(x)>r\}$ is a Lebesgue measurable set for each $r \in D$.
4. (a) Let F_{n} be a sequence of closed sets in \mathbb{R} such that $F_{n} \subset(n, n+1]$ and $F_{n} \cap F_{m}=\emptyset$, whenever $m \neq n$. Show that $F=\bigcup_{n=1}^{\infty} F_{n}$ is a closed set in \mathbb{R}.
(b) Let $E=\bigcup_{n=1}^{\infty} E_{n}$, where $E_{n} \in M$ and $E_{n} \cap E_{m}=\emptyset$, whenever $m \neq n$. If $m^{*}(E)<\infty$, then prove that for each $\epsilon>0$, there exist open set O and closed set F in \mathbb{R} such that $F \subset E \subset O$ and $m(O \backslash F)<\epsilon$.
5. Let $E \subset(0,1)$ be such that $E=\bigcup_{n=2}^{\infty}\left\{\left(\frac{1}{n-1}, \frac{1}{n}\right) \cap E\right\}$. If E is Lebesgue measurable, then show that $\lim _{n \rightarrow \infty} m\left\{\left(\frac{1}{n}, \frac{1}{n-1}\right) \cap E\right\}=0$.
6. Let $f:(X, d) \rightarrow \mathbb{R}$ be a continuous function. Show that $\{x \in X: f(x) \neq 0\}$ is an open set in the metric space (X, d).
7. Let $c_{o o}$ denote the space of all real sequences having only finitely many non-zero terms. Show that $\left(c_{o o},\|\cdot\|_{\infty}\right)$ is not an open subset of $\left(l^{1},\|\cdot\|_{1}\right)$.
8. For $n \in \mathbb{N}$, define $f_{n}(t)=t e^{-n t^{2}}$. Show that f_{n} is a convergent sequence in the space $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
9. For $n \in \mathbb{N}$, write $E=\bigcup_{n=1}^{\infty}\left[n, n+\frac{1}{n^{3 / 2}}\right]$. Show that $m(E)<\infty$ and $m\left(E^{2}\right)=\infty$, where $E^{2}=\left\{x^{2}: x \in E\right\}$.
10. Let C be the Cantor's ternary set. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)= \begin{cases}\frac{1}{x} & \text { if } x \in C \backslash\{0\}, \\ x & \text { otherwise. }\end{cases}$ Evaluate the Lebesgue integral $\int_{[0,1]} f d m$.
11. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0, \\ 0 & \text { otherwise. }\end{cases}$ Show that $\int_{[0,1]} f d m<\infty$.
12. Let $\varphi:(\mathbb{R}, M, m) \rightarrow[0, \infty]$ be a Lebesgue measurable simple function. Define a set function $\nu: M \rightarrow[0, \infty]$ by $\nu(E)=\int_{E} \varphi d m$. Show that $\nu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \nu\left(E_{n}\right)$, whenever E_{n} is a sequence of pairwise disjoint sets in M.
