DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA224: Real Analysis
EndSem Exam
Instructor: Rajesh Srivastava
May 2, 2014
Time duration: Three hour

1. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $F(x, y)=\left(x+e^{y}, y+e^{-x}\right)$. Show that F is everywhere locally invertible. Compute $D\left(F^{-1}\right)$.
2. Let $u=2 x^{2}-x y$ and $v=y-x$. Show that the system of equations can be solved for x, y everywhere except when $3 x=y$. Compute $\frac{\partial x}{\partial u}\left(u_{o}, v_{o}\right)$, for $3 x_{o} \neq y_{o}$.
3. Find a sufficient condition under which the equation $x^{2}+y e^{x}-\cos x y=0$ can be solved for y.
4. Let $f:[0, \infty) \rightarrow[0, \infty)$ be defined by $f(x)=\frac{x}{1+x}$. Show that f is uniformly continuous.
5. Let A be a closed subset of a metric space X. Suppose diameter $\delta(A) \leq r$ and $A \cap B_{r}(x) \neq \emptyset$. Show that $A \subset B_{2 r}(x)$.
6. Let F be a subset of a metric space X such that $B_{\epsilon}(x) \cap F \neq \emptyset$, for each $\epsilon>0$, implies $x \in F$. Show that F is closed.
7. Let $T:\left(C\left[0, \frac{\pi}{2}\right],\|\cdot\|_{\infty}\right) \rightarrow\left(C\left[0, \frac{\pi}{2}\right],\|\cdot\|_{\infty}\right)$ be defined by $(T f)(x)=\int_{s=0}^{x} f(s) \sin s d s$. Show that T is not a contraction but T^{2} is a contraction.
8. Let $c=\left\{x=\left(x_{1}, x_{2}, \ldots\right): \lim _{n \rightarrow \infty}\left|x_{n}\right|<\infty\right\}$. Show that $\left(c,\|\cdot\|_{\infty}\right)$ is a complete normed linear space. Whether $\left(c,\|\cdot\|_{\infty}\right)$ is a proper subspace of $\left(l^{\infty},\|\cdot\|_{\infty}\right)$? 4
9. Let X be a linear space. Suppose $\phi: X \rightarrow \mathbb{R}$ is a convex function satisfying $\phi(x)=0$ if and only if $x=0$ and $\phi(\alpha x)=|\alpha| \phi(x)$, for each $(\alpha, x) \in \mathbb{R} \times X$. Show that ϕ is a norm on X.
10. Let $0<p<1$. Show that $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)(n \geq 2)$ is not a normed linear space.
11. Let $A \subset[0,1]$ such that $m^{*}(A)=0$. Show that $m^{*}\left\{x^{5}: x \in A\right\}=0$.
12. Let $\left\{E_{k}: k=1,2, \ldots, n\right\}$ be a collection of disjoint measurable sets in \mathbb{R}, having each of them has finite Lebesgue measure. Let $f=\sum_{k=1}^{n} \alpha_{k} \chi_{E_{k}}, \alpha_{k} \in \mathbb{C}$. For $1<p<\infty$, evaluate the integral $\int_{\mathbb{R}}|f|^{p} d m$.
13. Suppose $E \subset\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$ is a measurable set and satisfying $\int_{E} x^{k} \sec x d x=0$, for all $k=0,1,2, \ldots$ Show that $m(E)=0$.
14. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of measurable functions given by $f_{n}(t)=\frac{n^{2} t}{1+n^{4} t^{3}}$. Evaluate $\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n} d m$.

END

