DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA224: Real Analysis Instructor: Rajesh Srivastava Time duration: Three hour EndSem Exam May 2, 2014 Maximum Marks: 45

1. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $F(x, y) = (x + e^y, y + e^{-x})$. Show that F is everywhere locally invertible. Compute $D(F^{-1})$.

2. Let $u = 2x^2 - xy$ and v = y - x. Show that the system of equations can be solved for x, y everywhere except when 3x = y. Compute $\frac{\partial x}{\partial u}(u_o, v_o)$, for $3x_o \neq y_o$. 3

- 3. Find a sufficient condition under which the equation $x^2 + ye^x \cos xy = 0$ can be solved for y.
- 4. Let $f : [0, \infty) \to [0, \infty)$ be defined by $f(x) = \frac{x}{1+x}$. Show that f is uniformly continuous.
- 5. Let A be a closed subset of a metric space X. Suppose diameter $\delta(A) \leq r$ and $A \cap B_r(x) \neq \emptyset$. Show that $A \subset B_{2r}(x)$.
- 6. Let F be a subset of a metric space X such that $B_{\epsilon}(x) \cap F \neq \emptyset$, for each $\epsilon > 0$, implies $x \in F$. Show that F is closed. 3
- 7. Let $T: \left(C\left[0, \frac{\pi}{2}\right], \|.\|_{\infty}\right) \to \left(C\left[0, \frac{\pi}{2}\right], \|.\|_{\infty}\right)$ be defined by $(Tf)(x) = \int_{s=0}^{x} f(s) \sin s ds$. Show that T is **not** a contraction but T^2 is a contraction. 2+2
- 8. Let $c = \left\{ x = (x_1, x_2, \ldots) : \lim_{n \to \infty} |x_n| < \infty \right\}$. Show that $(c, \|.\|_{\infty})$ is a complete normed linear space. Whether $(c, \|.\|_{\infty})$ is a proper subspace of $(l^{\infty}, \|.\|_{\infty})$?
- 9. Let X be a linear space. Suppose $\phi : X \to \mathbb{R}$ is a convex function satisfying $\phi(x) = 0$ if and only if x = 0 and $\phi(\alpha x) = |\alpha|\phi(x)$, for each $(\alpha, x) \in \mathbb{R} \times X$. Show that ϕ is a norm on X.
- 10. Let $0 . Show that <math>(\mathbb{R}^n, \|.\|_p)$ $(n \ge 2)$ is **not** a normed linear space.
- 11. Let $A \subset [0,1]$ such that $m^*(A) = 0$. Show that $m^*\{x^5 : x \in A\} = 0$.
- 12. Let $\{E_k: k = 1, 2, ..., n\}$ be a collection of disjoint measurable sets in \mathbb{R} , having each of them has finite Lebesgue measure. Let $f = \sum_{k=1}^{n} \alpha_k \chi_{E_k}, \ \alpha_k \in \mathbb{C}$. For $1 , evaluate the integral <math>\int_{\mathbb{R}} |f|^p dm$.

P.T.O.

- 13. Suppose $E \subset \left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$ is a measurable set and satisfying $\int_E x^k \sec x \, dx = 0$, for all $k = 0, 1, 2, \dots$ Show that m(E) = 0.
- $k = 0, 1, 2, \dots$ Show that $m(t_{L_{J}} c_{n})$. 14. Let $f_{n} : [0, 1] \to \mathbb{R}$ be a sequence of measurable functions given by $f_{n}(t) = \frac{n^{2}t}{1 + n^{4}t^{3}}$. Evaluate $\lim_{n \to \infty} \int_{[0, 1]} f_{n} dm$.

END