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Introduction

Real Analysis provides the rigorous foundations of calculus and, more broadly, of modern
mathematical analysis. The guiding theme of the course is the systematic study of lim-
iting processes: convergence of sequences and functions, continuity and differentiability
defined through limits, and integration built upon measurable structures. Throughout,
emphasis is placed on precise definitions, correct quantifiers, and logically complete proofs,
together with carefully chosen examples and counterexamples that clarify the necessity of
hypotheses and the sharpness of conclusions.

We begin with metric spaces (X, d), the natural setting in which convergence and
continuity can be formulated beyond R. We study open and closed sets, interior and
closure, limit points, compactness, and the topological characterization of continuity. We
then move to normed linear spaces (V, ∥ · ∥), where algebraic and topological structures
interact. A central concept is completeness, which ensures that every Cauchy sequence
converges and underlies fundamental existence results such as the contraction mapping
principle. Uniform convergence is treated as a key mode of convergence for sequences
of functions, since it provides control strong enough to justify passing limits through
continuous operations under appropriate assumptions. Classical inequalities, including
Young’s, Hölder’s, and Minkowski’s inequalities, are developed as essential tools for norm
estimates and convergence arguments.

The second part focuses on functions on Rn. After formalizing limits and continuity in
Euclidean space, we study partial derivatives, directional derivatives, and differentiability
in the Fréchet sense, where differentiability at a point means approximation by a linear
map with a remainder term that is small compared with ∥h∥. From this viewpoint we
develop the multivariable chain rule and Taylor’s theorem with remainder, which describe
the local structure of smooth functions and provide quantitative error estimates. These
results culminate in the inverse mapping theorem and the implicit function theorem, which
give precise conditions for local invertibility of maps and for representing solution sets of
equations F (x, y) = 0 as graphs of functions.

In the final part, we develop Lebesgue measure and integration to address the lim-
itations of Riemann integration. We construct outer measure, define measurable sets
using Carathéodory’s criterion, and obtain Lebesgue measure on R. Measurable func-
tions are introduced via approximation by simple functions, leading to the definition of
the Lebesgue integral for nonnegative functions and then for integrable functions. The
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principal convergence theorems—the monotone convergence theorem, Fatou’s lemma, and
the dominated convergence theorem—are proved and used to justify the interchange of
limits and integrals in a principled way. Classical examples, including the Cantor set,
illustrate null sets, non-measurable phenomena, and the distinction between pointwise
and uniform convergences.

By the end of the course, students should be able to analyze convergence and conti-
nuity in metric and normed spaces, apply the main structural theorems of multivariable
differentiability, and use Lebesgue measure and integration as foundational tools for fur-
ther study in analysis, probability, and partial differential equations.



Chapter 1

Metric and Normed Linear Spaces

This chapter develops the basic language of analysis in abstract spaces. We intro-
duce metrics and norms, discuss sequences and their convergence, and study the
topology induced by a metric through open and closed sets, interior and closure.
Completeness and Cauchy sequences lead to the key notion of a complete metric
space, while density and continuity clarify how analytic structure behaves under map-
pings. Finally, uniform convergence and the contraction mapping principle (Banach
fixed point theorem) provide powerful tools used repeatedly later; Young’s, H"older’s,
and Minkowski’s inequalities are included as essential estimates connecting normed
spaces to Lp-type analysis.

1.1 Syllabus map
This chapter is organized into three thematic parts:

(1) Metric spaces and topology: open and closed sets, interior and closure, dense
subsets, continuity, compactness, and completeness.

(2) Normed vector spaces: norms, norm-induced metrics, and standard examples,
together with basic inequalities.

(3) Uniform convergence: uniform convergence of sequences of functions and differen-
tiation under the limit.

1.2 Metric spaces
Let X be a non-empty set. A map d : X ×X → R+ = [0,∞) such that

(i) d(x, y) = 0 if and only if x = y, x, y ∈ X.

7



8 CHAPTER 1. METRIC AND NORMED LINEAR SPACES

(ii) d(x, y) = d(y, x) (symmetric).

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

is called a metric on X, and the pair (X, d) is called a metric space.

Example 1.2.1. If X = Rn, then for x, y ∈ Rn,

1. d1(x, y) = ∑n
i=1 |xi − yi|;

2. d2(x, y) = (∑n
i=1 |xi − yi|2)

1
2 ;

3. d∞(x, y) = sup1≤i≤n |xi − yi|;
define metrics on Rn.

Example 1.2.2. Let (X, d) be a metric space. Prove that d′(x, y) = min{1, d(x, y)}
defines a metric.

Example 1.2.3. If X = C[0, 1], the space of continuous functions on [0, 1], then for
f, g ∈ X,

d∞(f, g) = sup
0≤t≤1

|f(t) − g(t)|

defines a metric on R.

(Hint: f is continuous on [0, 1], so f is bounded and |f(t) − h(t)| ≤ |f(t) − g(t)| + |g(t) −
h(t)|.)

Example 1.2.4. If X ̸= ∅, then for x, y ∈ X,

d0(x, y) =
1, x ̸= y

0, x = y

defines a metric on X. This is called the discrete metric on X and (X, d0) is called discrete
metric space. Thus, every non-empty set has a metric.

Note that for d(x, z) ≤ d(x, y) + d(y, z) to hold, we need to verify three cases:

1. x = y, y ̸= z.

2. x ̸= y, y = z.

3. all of x, y, z are distinct.

Example 1.2.5. Let (X, d) be a metric space, then
(
X,

d

1 + d

)
is also a metric space.
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For this, consider, f(t) = t

1 + t
, t ∈ [0,∞). Then f ′(t) = 1

(1 + t)2 > 0. Hence, f is a

strictly increasing function and f(0) = 0. On the other hand

t+ s

1 + t+ s
<

t

1 + t
+ s

1 + s

Put t = d(x, y), s = d(y, z). Then

t+ s ≥ d(x, z) and f is strictly increasing

implies f ◦ d(x, z) ≤ f(t+ s) < t

1 + t
+ s

1 + s
= f ◦ d(x, y) + f ◦ d(y, z).

Example 1.2.6. Let (X, d) be a metric space. Suppose and f : [0,∞) → [0,∞) be an
increasing function such that f(s + t) ≤ f(s) + f(t) and f(t) = 0 if and only if t = 0.
Then f ◦ d is a metric on X.

Example 1.2.7. LetH∞ (Hilbert cube) be the space of sequences x = (xn) = (x1, x2, . . . , xn, . . .)
such that |xn| ≤ 1. Then

d(x, y) =
∞∑

n=1

|xn − yn|
2n

defines a metric on H∞.

(i) d(x, y) ≤ ∑ 2
2n < ∞.

(ii) |xn − zn| ≤ |xn − yn| + |yn − zn|

implies
k∑

n=1

|xn − zn|
2n

≤
k∑

n=1

|xn − yn|
2n

+
k∑

n=1

|yn − zn|
2n

≤ d(x, y) + d(y, z) < ∞.

Since the left-hand side is an increasing sequence which is bounded above, it follows
that

lim
k→∞

k∑
n=1

|xn − zn|
2n

≤ d(x, y) + d(y, z)

implies d(x, z) ≤ d(x, y) + d(y, z).

Exercise 1.2.8. Prove that d(x, y) =
∣∣∣ 1

x
− 1

y

∣∣∣ defines a metric on (0,∞).
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1.3 Normed linear spaces and fundamental inequali-
ties

1.3.1 Normed linear spaces
Let X be a vector space over the field R or C. A map ∥ · ∥ : X → [0,∞) is called a norm
if.

(i) ∥x∥ = 0 if and only if x = 0.

(ii) ∥αx∥ = |α|∥x∥, for all x ∈ X, for all α ∈ R or C.

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥, for all x, y ∈ X.

If we write d(x, y) = ∥x− y∥, then d is a metric on the vector space X. But all metric on
a vector space cannot be obtained by norm.

Example 1.3.1. Let X be a vector space. Then the discrete metric cannot be induced
by any norm on X.

For this, if so then d0(x, y) = ∥x− y∥. Then for x ̸= 0,

∥x∥ = d0(x, 0) = 1 = d0(αx, 0) = ∥αx∥ = |α|∥x∥, ∀α.

However, if d is a metric on a vector spaceX such that d(x, y) = d(x−y, 0) and d(αx, αy) =
|α|d(x, y). Then d(x, 0) = ∥x∥ defines a norm on X. That is,

(i) ∥x∥ = 0 if and only if x = 0.

(ii) ∥αx∥ = |α|∥x∥.

(iii) ∥x+ y∥ = d(x+ y, 0) = d(x,−y) ≤ d(x, 0) + d(−y, 0).

Example 1.3.2. Let ℓ1 denote the space of all the sequences of real (or complex) numbers
such that ∑∞

n=1 |xn| < ∞. Then,

∥x∥1 =
∞∑

n=1
|xn|

defines a norm on ℓ1. The pair (ℓ1, ∥ · ∥1) is a normed linear space. For simplicity, we
write ℓ1 for (ℓ1, ∥ · ∥1).

(Hint: ∑k
n=1 |xn + yn| ≤ ∑k

n=1 |xn| +∑k
n=1 |yn| ≤ ∥x∥1 + ∥y∥1.)

Example 1.3.3. ℓ2 denotes the space of all sequences on R (or C) such that ∑∞
n=1 |xn|2 <

∞. Define

∥x∥2 :=
( ∞∑

n=1
|xn|2

) 1
2

defines a norm on ℓ2.
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(Hint: ∑k
n=1 |xn + yn|2 ≤ ((∑k

n=1 |xn|) 1
2 + (∑k

n=1 |yn|) 1
2 )2.)

Example 1.3.4. ℓ∞ = space of all sequences on R (or C) such that supn∈N |xn| < ∞.
The function

∥x∥∞ = sup
n∈N

|xn|

defines a norm on ℓ∞.

Example 1.3.5. c0 = space of all sequences on R (or C) such that limn→∞ xn = 0 Then
(xn) must be bounded. Hence

∥x∥∞ = sup
n∈N

|xn| < ∞.

Thus, (c0, ∥ · ∥∞) is a normed linear space.

Exercise 1.3.6. If x = (x1, x2, . . . , xn) ⊆ Rn (or Cn), then

∥x∥∞ ≤ ∥x∥1 ≤
√
n∥x∥2 ≤ n∥x∥∞.

1.3.2 Geometry of Spheres in (Rn, ∥ · ∥p)
For 0 ≤ p ≤ ∞ and x ∈ Rn, write

∥x∥p =
(∑

|xi|p
)1/p

.

Then ∥ · ∥p is a norm for 1 ≤ p < ∞, and for 0 < p < 1, ∥x∥p
p = dp(0, x) with dp(x, y) =

∥x− y∥p
p is a metric. (We see later).

Let Sp
1(0) = {x : dp(0, x) = 1}. Then the following figure can be plotted for different

values of p; 0 < p < ∞; p = ∞.

y

x

p > 1

p = 2

p = 1 p = ∞

Shapes for 0 < p < 1 would look like star-shaped curves (not shown).
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Exercise 1.3.7. If x = (xn) ∈ ℓ1, then x ∈ ℓ∞.
∞∑

n=1
|xn|2 <

∞∑
n=1

∥x∥∞|xn| implies ∥x∥2 ≤ ∥x∥∞∥x∥1.

Thus, ℓ1 ⊊ ℓ2 ⊊ c0 ⊊ ℓ∞.

Exercise 1.3.8. If 1 < p < ∞, then for ∑∞
n=1 |xn|p < ∞, one can define a norm ∥ · ∥p on

lp via

∥x∥p =
( ∞∑

n=1
|xn|p

)1/p

.

To prove this, we need some inequalities.

1.3.3 Young’s inequality
Let 1 < p < ∞ and a, b > 0. Then for 1

p
+ 1

q
= 1, ab ≤ ap

p
+ bq

q
. Proof: Let y = xp−1,then

x = yq−1 (since p− 1 = 1
q−1 by 1

p
+ 1

q
= 1). Now, it is clear that

ab ≤
∫ a

0
xp−1 dx+

∫ b

0
yq−1 dy = ap

p
+ bq

q
.

Note that equality in (∗) holds if and only if ap = bq (or a = bq−1). For this, consider

ab = ap

p
+ bq

q
,

1
p

+ 1
q

= 1.

Replace a → a
1
p , b → b

1
q and 1

p
= α. Then, we get

aαb1−α = αa+ (1 − α)b

or
tα − αt− (1 − α) = 0 if t = a/b.

Let
f(t) = tα − αt− (1 − α), t ∈ (0,∞).

Then f(1) = 0 and

f ′(t) = αtα−1 − α = α(tα−1 − 1) = 0 if and only if t = 1.

Since f ′(t) < 0 if t > 1 and f ′(t) > 0 for 0 < t < 1. Hence, f is strictly increasing in
(0, 1) and strictly decreasing in (1,∞). Thus, t = 1 is the point of absolute maximum of
f . Therefore, f(t) ≤ f(1) = 0, which is another proof of the inequality. On the other
hand, f(t) = 0 if and only if t = 1. This completes the proof.



1.3. NORMED LINEAR SPACES AND FUNDAMENTAL INEQUALITIES 13

1.3.4 H"older’s inequality
Let 1 ≤ p ≤ ∞ and 1

p
+ 1

q
= 1. Then for x ∈ ℓp and y ∈ ℓq, it follows that

x · y(= x1y1 + . . .+ xnyn + . . .) ∈ ℓ1,

and
∥x · y∥1 ≤ ∥x∥p∥y∥q · · · (∗)

(where 1
∞ = 0 adopted.) When p = 1, q = ∞. In this case (∗),

∥x · y∥1 =
∞∑

i=1
|xiyi| ≤

∑
|xi| · sup |yi| = ∥x∥1∥y∥∞.

Now, let 1 < p < ∞, then 1 < q < ∞. Substitute a = aj = |xj |
∥x∥p

and b = bj = |yj |
∥y∥q

in the
Young’s Inequality. Then

n∑
i=1

|xjyj|
∥x∥p∥y∥q

≤
n∑

i=1

(
|xj|p

p∥x∥p
p

+ |yj|q

q∥y∥q
q

)
≤
(

∥x∥p
p

p∥x∥p
p

+
∥y∥p

p

q∥y∥q
q

)
= 1
p

+ 1
q

= 1.

That is,
n∑

j=1
|xjyj| ≤ ∥x∥p∥y∥q, for all n ≥ 1

Since the left-hand side is an increasing sequence which is bounded above, hence

∥x · y∥1 ≤ ∥x∥p∥y∥q.

Notice that if ∥x∥p = 1 = ∥y∥q, then ∥x · y∥1 ≤ 1, and equality holds if and only if
|yj|p = |xj|q, ∀j.
This follows from Young’s equality. For

ab = ap

p
+ bq

q
,

we must have ap = bq.

1.3.5 Minkowski’s inequality
Let 1 ≤ p ≤ ∞. Then for x, y ∈ ℓp, x+ y ∈ ℓp, and ∥x+ y∥p ≤ ∥x∥p + ∥y∥p (∗)

Proof. For p = 1 or ∞, the proof is trivial. Let 1 < p < ∞. Then

∥x+ y∥p =
( ∞∑

i=1
|xi + yi|p

)1/p

≤
( ∞∑

i=1
(|xi| + |yi|)p

)1/p

. (1)
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Since
(|xi| + |yi|)p = (|xi| + |yi|)(|xi| + |yi|)p−1.

By Hölder’s inequality,
∑

(|xi| + |yi|)p−1|xi| ≤
(∑

(|xi| + |yi|)(p−1)q
)1/q (∑

|xi|p
)1/p

.

Thus, ∑
(|xi| + |yi|)p ≤

(∑
(|xi| + |yi|)p

)1/q
(∥x∥p + ∥y∥p) .

That is (∑
(|xi| + |yi|)p

)1− 1
q ≤ ∥x∥p + ∥y∥p.

From (1), we get

∥x+ y∥p ≤
(∑

(|xi| + |yi|)p
)1/p

≤ ∥x∥p + ∥y∥p.

Note that as similar to above cases, it can be shown that equality in (∗) holds if and only
if

x = ∥x∥p

∥y∥p

y.

Now, if x, y ∈ ℓp, then x + y ∈ ℓp. Because a, b > 0, (a + b)p ≤ {2 max{a, b}}p that is,
(a+ b)p ≤ 2p(ap + bp), and so,∑

|xj + yj|p ≤ 2p(
∑

|xj|p +
∑

|yj|p) < ∞.

Thus, ℓp is closed under ∥ · ∥p. Hence (ℓp, ∥ · ∥p) is a normed linear space.

Theorem 1.3.9. If f, g ∈ R[a, b], then for ∥f∥p = (
∫

|f |p)
1
p , we get

(i) ∥fg∥1 ≤ ∥f∥p∥g∥q where 1
p

+ 1
q

= 1

(ii) ∥f + g∥p ≤ ∥f∥p + ∥g∥p, 1 ≤ p < ∞

For p = ∞,
∥f∥∞ = sup

t∈[a,b]
|f(t)|, where f ∈ R[a, b].

Then (R[a, b], ∥ · ∥∞) is a normed linear space.

Definition 1.3.10. (Open and Closed balls):

(i) Br(x0) = {y ∈ X : d(x0, y) < r} is called open ball.

(ii) Br(x0) = {y ∈ X : d(x0, y) ≤ r} is called closed ball.
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1.3.6 Open sets in metric spaces
Definition 1.3.11. A set O ⊂ (X, d) is said to be open if for all x ∈ O, there exists r > 0
such that Br(x) ⊂ O.

Proposition 1.3.12. If {Oi : i ∈ I}, I is any index set. Then

(i) ⋃i∈I Oi is open (arbitrary union of open sets is open).

(ii) ⋂n
i=1 Oi is open (finite intersection of open sets is open).

Remark. Arbitrary intersection of open sets need not be open.

Example 1.3.13. X = R, u(x, y) = |x− y|. ⋂∞
n=1

(
− 1

n
, 1

n

)
= {0} is not open.

Example 1.3.14. Let f : R → R be continuous. Then A = {x ∈ R : f(x) > 0} is open.

Proof. Let x ∈ A implies f(x) > 0. For ε = f(x) > 0, there exists δ > 0 such that for all
y ∈ (−δ, δ) + x = (x− δ, x+ δ),

|f(y) − f(x)| < f(x).

implies 0 < f(y) < 2f(x), ∀ y ∈ (x− δ, x+ δ).

Hence (x− δ, x+ δ) ⊂ A implies A is open.

Open Sets in R :
A countable union of open intervals is an open set.On the other hand, any open set in

R can be written as a countable union of disjoint open intervals.

Theorem 1.3.15. Let O be an open set in R, then there exists a unique disjoint family
of countably many open intervals In such that

O =
∞⋃

n=1
In

Proof. Since O is open, for x ∈ O, there exists an open interval (a, b) such that x ∈
(a, b) ⊂ O. Now, we extract the largest open interval containing x and contained in O.
Let ax = inf{a : (a, x] ⊂ O}, and bx = sup{b : [x, b) ⊂ O}. Then Ix = (ax, bx) will be the
largest open interval containing x and contained in O.
Note that Ix = (ax, by) ⊂ O. For this, let ax < z < by, then ax < z − ϵ for small
ϵ > 0 =⇒ ax + ϵ < z. But by definition of infimum, ∃ a < ax + ϵ and (a, x] ⊂ O
=⇒ (ax + ϵ, x] ⊂ O.

Similarly, [x, bx − ϵ) ⊂ O =⇒ (ax + ϵ, bx − ϵ) ⊂ O for small ϵ > 0 =⇒ (ax, bx) ⊂ O.
Now, if x, y ∈ O and x ̸= y then either Ix ∩ Iy = ∅ or Ix = Iy.
If Ix ∩ Iy ̸= ∅, then Ix ∪ Iy is an open interval containing x and y.
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Therefore, by maximality of Ix for x and Iy for y, it follows that Ix ∪ Iy ⊆ Ix =⇒ Iy ⊆ Ix

Since y ∈ Iy =⇒ Iy = Ix (∵ Iy is maximal).
Now, O = ⋃

x∈O Ix. Since Ix and Iy are disjoint (if x ̸= y), we can assign a distinct rational
to each of them. That is, choose rx ∈ Ix and ry ∈ Iy. Then rx ̸= ry.
Thus,

{Ix : x ∈ O} 1−1−→ Q (set of rationals) via Ix 7→ rx

Hence,
O =

∞⋃
i=1

Iri
(1)

The representation (1) is unique. Let O = ⋃∞
n=1 In = ⋃∞

m=1 Jm.
Then In = In ∩ O = ⋃∞

m=1(In ∩ Jm). Since {In ∩ Jm : m ∈ N} is a disjoint family and
In is an open interval, In ⊂ In ∩ Jm0 for some m0. But then In ⊂ Jm0 , and given In is
maximal, =⇒ In = Jm0 . Thus, the representation (1) is unique upto change in order of
union.

Definition 1.3.16. (Convergent Sequence):
A sequence (xn) ∈ (X, d) is said to be convergent if ∀ϵ > 0, ∃N ∈ N and x0 ∈ X such

that n ≥ N implies d(xn, x0) < ϵ if and only if xn ∈ Bϵ(x0), ∀n ≥ N .

Definition 1.3.17. (Cauchy Sequence):
A sequence (xn) ∈ (X, d) is said to be a Cauchy sequence if ∀ϵ > 0, ∃N ∈ N such that

m,n ≥ N implies d(xn, xm) < ϵ

Example 1.3.18. Let X = (0, 1) and d(x, y) = |x− y|. Then { 1
n
} is a Cauchy sequence

because
|xn − xm| =

∣∣∣∣ 1n − 1
m

∣∣∣∣ → 0 as n,m → ∞.

But lim xn = 0 /∈ X. Hence not convergent.

However, every convergent sequence is a Cauchy sequence.

Definition 1.3.19. A set A ⊆ (X, d) is said to be bounded if ∃x0 ∈ X and M > 0 such
that d(a, x0) ≤ M, ∀a ∈ A if and only if a ∈ BM(x0), ∀a ∈ A. that is, A is bounded if
and only if A is contained in a ball.

Example 1.3.20. The set {(x, y) : y = sin
(

1
x

)
, x ̸= 0} ∪ ({0} × [−1, 1]) is not bounded,

as R × {0} is contained in it.

Proposition 1.3.21. Every Cauchy sequence is bounded.

Proof. Since (xn) ⊂ (X, d) is a Cauchy sequence, for ϵ = 1, ∃N ∈ N such that

d(xm, xn) < 1, ∀m,n ≥ N.

So d(xn, xN) < 1, ∀n ≥ N . Let M = max{1, d(xi, xN) : i = 1, 2, . . . , N − 1}. Then
d(xn, xN) ≤ M,∀n ≥ 1 implies xn ∈ BM(xn).
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But converse need not be true. For (R, u), u = usual metric. xn = {−1, 1,−1, 1, . . .}
is bounded but not Cauchy sequence.

Proposition 1.3.22. Let (xn) be a Cauchy sequence in (X, d). If (xnk
) is a subsequence

which converges to x. Then xn → x.

Proof. For ε > 0, there exists N1 ∈ N such that

d(xn, xm) < ε

2 , ∀n,m ≥ N1.

Also, for the same ε > 0, there exists N2 ∈ N such that

d(xnk
, x) < ε

2 , ∀nk ≥ N2.

Let N = max{N1, N2}. Then

d(xn, xm) < ε

2 and d(xnk
, x) < ε

2 for all n,m, nk ≥ N.

implies d(xnk
, xm) < ε

2 , ∀nk,m ≥ N.

Thus,
d(x, xm) ≤ d(x, xnk

) + d(xnk
, xm) < ε for all m ≥ N.

Hence, xm → x.

Remark. If X = (0, 1) and d(x, y) = |x − y|. Then xn = 1
n

is a Cauchy sequence, but it
has no convergent subsequence.

1.3.7 Closed sets in metric spaces
Definition 1.3.23. A set F ⊂ (X, d) is said to be closed if F c is open. that is, for all
x ∈ F c = X \ F , ∃ ϵ > 0 such that Bϵ(x) ⊆ F c.
On the other hand, if for each ϵ > 0, Bϵ(x) ∩ F ̸= ∅ implies x ∈ F.

Example 1.3.24. The set A = {(x, y) : y = sin 1
x
, x ̸= 0} is neither open nor closed set

in R2. If xn = 1
nπ

̸= 0, (xn, yn) = ( 1
nπ
, 0) ∈ A, but limn→∞(xn, yn) = (0, 0) /∈ A Since any

ball B 1
n
( 1

π
, 0) ̸⊆ A implies A is not open in R2.

Theorem 1.3.25. Let (X, d) be a metric space and F ⊂ X. Then the following are
equivalent (F.A.E):

1. F is a closed set (F c open).

2. ∀ϵ > 0, Bϵ(x) ∩ F ̸= ∅ implies x ∈ F .
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3. ∀ sequence (xn) ∈ F such that xn → x implies x ∈ F .

Proof. (1) implies (2): Suppose F is closed. Claim: Bϵ(x) ∩ F ̸= ∅, ∀ϵ > 0 implies x ∈
F .
Notice that if x /∈ F implies x ∈ F c and F c is open implies ∃ϵ0 > 0 such that

Bϵ0(x) ⊂ F c implies Bϵ0(x) ∩ F = ∅,

which is a contradiction.
(2) implies (3): Let (xn) ⊂ F and xn → x. Then for each ϵ > 0, xn ∈ Bϵ(x) for all
n ≥ n0.

implies xn ∈ Bϵ(x) ∩ F ̸= ∅, ∀ϵ > 0 implies x ∈ F

(3) implies (1): Claim: F c is open. Suppose F c is not open. Then there exists x ∈ F c

such that for each n ∈ N, there will be xn ∈ F and d(xn, x) < 1
n
. By (3), x ∈ F, which is

a contradiction.

Example 1.3.26. Let f : R → R be continuous. Then A = {x : f(x) = 0} is closed.
Since xn ∈ A and xn → x. So f(xn) = 0, ∀n ≥ 1 implies lim f(xn) = 0 implies f(x) =
0.

1.3.8 Interior points and interior of a set
Let A ⊂ X. Then interior(A) or Int(A) or A◦ is the largest open set contained in A. That
is,

A◦ =
⋃

{O ⊂ X : O open, O ⊆ A}

=
⋃

{Bϵ(x) ⊂ A : for x ∈ A and some ϵ > 0}= union of all open balls contained in A.

1.3.9 Closure and limit points
Let A ⊂ (X, d). The closure of A or cl(A) or A is the smallest closed set containing A.
That is,

A =
⋂

{F ⊂ X : F closed and A ⊂ F}

= {x ∈ X : ∃xn ∈ A with xn → x}

= collection of limits of all convergent sequences in A (limit need not be in the set A).

Example 1.3.27. A =
{
(n, 1

n
) : n ∈ N

}
. Then closure of A in (R, u) is A = A and A◦ = ∅

(Why?).

Example 1.3.28. 1. A = {(x, y) : |x| < 1, |y| < 1}. Then
A = {(x, y) : |x| ≤ 1, |y| ≤ 1}.
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2. A = {(x, y) : y = sin
(

1
x

)
, x ̸= 0}. Then

A = {(x, y) : y = sin
(

1
x

)
, x ̸= 0} ∪ ({0} × [−1, 1]).

Example 1.3.29. Let c00 = space of all sequences having finitely many non-zero terms.

c00 = {x = (x1, x2, . . . , xn, 0, 0, . . .) : xi ∈ R}

∥x∥∞ := max
1≤i≤n

|xi| < ∞.

implies c00 ⊊ ℓ∞ (proper subspace).

Let
Xn =

(
1, 1

2 , . . . ,
1
n
, 0, 0, . . .

)
∈ c00.

Let
X =

(
1, 1

2 , . . . ,
1
n
,

1
n+ 1 , . . .

)
∈ ℓ∞.

then
∥X −Xn∥∞ = sup

k≥n

1
k + 1 = 1

n+ 1 → 0.

but X /∈ c00. Hence c00 is not a closed subspace of ℓ∞. In addition c00 is not open in ℓ∞.
For this, let ϵ > 0 be arbitrary and consider the sequence y =

(
ϵ
2 ,

ϵ
4 ,

ϵ
8 , . . .

)
∈ ℓ∞. Then

∥y∥∞ = ϵ
2 < ϵ, so y ∈ Bϵ(0), but y /∈ c00. Therefore, Bϵ(0) ̸⊆ c00 for any ϵ > 0.

For 1 ≤ p < ∞, c00 ⊊ ℓp and c00 is neither closed nor open in ℓp. For this, let

xn =
(
ϵp

2n+1

)1/p

, 1 ≤ p < ∞,

and consider x = (x1, x2, . . .) ∈ ℓp. Then x /∈ c00 and

∥x∥p
p =

∞∑
n=1

|xn|p =
∞∑

n=1

ϵp

2n+1 = ϵp

2 ,

so ∥x∥p = ϵ
21/p < ϵ. Hence x ∈ Bϵ(0), and therefore Bϵ(0) ̸⊆ c00 for any ϵ > 0. Conse-

quently, c00 is not open in ℓp.
To see that c00 is not closed in ℓp, let Xn = (x1, x2, . . . , xn, 0, 0, . . .) ∈ c00. Then Xn → x
in ℓp, since

∥Xn − x∥p
p =

∞∑
k=n+1

ϵp

2k+1 → 0 as n → ∞.

But x /∈ c00.

Proposition 1.3.30. Let A ⊂ (X, d). Then x ∈ A if and only if Bϵ(x) ∩ A ̸= ∅, for all
ϵ > 0.
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Proof. Let x ∈ A. Suppose ∃ ϵ0 > 0 such that Bϵ0(x) ∩ A = ∅. Then A ⊂ (Bϵ0(x))c,
a closed set. By definition of A, A is the smallest closed set containing A. Hence,
A ⊂ (Bϵ0(x))c. Since x ∈ A, but x /∈ (Bϵ0(x))c, this is a contradiction.

Conversely, suppose Bϵ(x) ∩A ̸= ∅ for all ϵ > 0. By the previous result, x ∈ A (since
A is closed).

Proposition 1.3.31. x ∈ A if and only if there exists a sequence (xn) with xn ∈ A such
that xn → x.

Proof. If x ∈ A, then for all n ∈ N, B1/n(x) ∩ A ̸= ∅. So, ∃ xn ∈ B1/n(x) ∩ A. Thus,

d(xn, x) < 1
n
, ∀n ∈ N implies xn → x.

Conversely, if there exists xn ∈ A with xn → x. Then for ϵ > 0, ∃n0 ∈ N such that
d(xn, x) < ϵ for all n ≥ n0, implies xn ∈ Bϵ(x) ∩ A ̸= ∅ for all ϵ > 0. Thus x ∈ A (by
previous result).

1.4 Complete metric spaces
We have seen that there are Cauchy sequences whose limits need not necessarily belong
to the space.
For example, the sequence 1

n
∈ ((0, 1), u) under the usual metric, is a Cauchy sequence

but the limit 1
n

→ 0 /∈ (0, 1).
It is always possible to enlarge the space so that limits of all Cauchy sequences can

be accommodated. This process is known as the completion of metric spaces, we shall
see later. However, there are many spaces which do accommodate limits of their Cauchy
sequences.

Definition 1.4.1. A metric space (X, d) is called complete if every Cauchy sequence in
X has its limit in X.

Example 1.4.2. (R, u) is a complete space.
Let (xn) be a Cauchy sequence in R. Then it is bounded. And by the Bolzano–Weierstrass

theorem, there exists a subsequence xnk
→ x ∈ R. For any ϵ > 0, there exists a natural

number k0 such that
|xnk

− x| < ϵ for all k ≥ k0 (1)
But the sequence (xn) is Cauchy, so for all ϵ > 0, there exists n0 ∈ N such that |xn−xm| < ϵ
for all n,m ≥ n0. Let m ≥ n0 and m ≥ nk0 . Then

|xn − xnk
| < ϵ for any n ≥ n0 and k ≥ k0. (2)

From (1) and (2), it follows that:

|xn − x| ≤ |xn − xnk
| + |xnk

− x| < 2ϵ



1.4. COMPLETE METRIC SPACES 21

for n ≥ n0 and nk ≥ nk0 . Thus, for ϵ > 0, there exists n0 ∈ N such that

n ≥ n0 =⇒ |xn − x| < ϵ.

Notice that the above discussion can be used to prove the following result.

Proposition 1.4.3. Let (xn) be a Cauchy sequence in a metric space (X, d). If (xn) has
a convergent subsequence xnk

→ x, then xn → x. (Proof is similar to the above.)

Example 1.4.4. (R, d) with d(x, y) = | tan−1(x) − tan−1(y)| is incomplete.

(Hint: xn = tan π
2

(
n

n+1

)
is Cauchy, but not converging to a point in R.

Example 1.4.5. Every discrete metric space is complete.

Let X ̸= ∅, and d0(x, y) =
1 if x ̸= y

0 if x = y

Suppose (xn) ⊂ X is Cauchy. Then for ϵ > 0, ∃N ∈ N such that d(xn, xm) < ϵ for all
n,m ≥ N .

Now, d0(xn, xm) =
0 if 0 < ϵ ≤ 1

0 or 1 if ϵ > 1.
But if d0(xn, xm) = 1 for only finitely many n,m > N (for some ϵ > 1), then

lim
n,m→∞

d0(xn, xm) = 1 ̸= 0 (Why?)

Thus, for all ϵ > 0, ∃N ′ ∈ N such that d(xn, xm) = 0, for all n,m ≥ N ′.
that is, (xn) = (x1, x2, . . . , x

′
N , x, x, . . .) → x.

(Thus, every Cauchy sequence in (X, d0) is eventually constant.)

Example 1.4.6. (Rn, ∥ · ∥p) is complete for 1 ≤ p ≤ ∞.
Let 1 ≤ p < ∞, and xk = (xk

1, . . . , x
k
n) be a Cauchy sequence in (Rn, ∥ · ∥p). Then for

ϵ > 0, there exists k0 ∈ N such that for all k, l ≥ k0,

∥xk − xl∥p =
 n∑

j=1
|xk

j − xl
j|p
1/p

< ϵ

=⇒ |xk
j − xl

j| < ϵ for all k, l ≥ k0

=⇒ (xk
j ) is a Cauchy sequence in (R, u).

Hence xk
j → xj for all j. Then for ϵ > 0, there exists mj ∈ N such that k ≥ mj =⇒

|xk
j − xj| < ϵ. Let m0 = maxj{mj}. Then, for x = (x1, . . . , xn),

∥xk − x∥p < ϵ for k ≥ m0.

Notice that the case p = ∞ is similar. We skip its proof here.
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Example 1.4.7. Let 1 ≤ p ≤ ∞. Then (ℓp, ∥ · ∥p) is complete.
Let 1 ≤ p < ∞, and let xk = (xk

1, x
k
2, . . .) be a Cauchy sequence in (ℓp, ∥ · ∥p). Then

for ϵ > 0, there exists n0 ∈ N such that ∀k, l ≥ n0 =⇒ ∥xk − xl∥p < ϵ

=⇒
n∑

j=1
|xk

j − xl
j|p < ϵp (1)

For each fixed n, this reduces to (Rn, ∥ · ∥p), which we know is complete. Hence xk
j → xj;

j = 1, 2, . . . , n. Thus, letting k → ∞ in (1), it follows that
n∑

j=1
|xl

j − xj|p < ϵp, ∀l ≥ n0 (2)

But the left-hand side of (2) is an increasing sequence and bounded above, hence, letting
n → ∞, we get

∞∑
j=1

|xl
j − xj|p < ϵp

∥xl − x∥p ≤ ϵ, ∀l ≥ n0

where x = (x1, x2, . . . , xn, . . .). Notice that

∥x∥p ≤ ∥x− xn0∥p + ∥xn0∥p < ϵ+ ∥xn0∥p < ∞ =⇒ x ∈ ℓp.

Proposition 1.4.8. Every closed subset of a complete metric space is complete.

Proof. Let F be a closed subset of a complete metric space (X, d). Then (xn) ⊂ F is a
Cauchy sequence, it follows that (xn) is a Cauchy sequence in X. Hence xn → x ∈ X.
But F is closed, it implies that x ∈ F .
In fact, if (X, d) is complete, then F is closed if and only if F is complete. (Hint: it
follows easily.)

Example 1.4.9. Show that (c0, ∥ · ∥∞) is a proper closed subspace of (ℓ∞, ∥ · ∥∞).
We know that c0 ⊊ ℓ∞. Now, let xk = (xk

1, . . . , x
k
j , . . . ) be a sequence in c0 such

that xk → x = (x1, . . . , xj, . . . ). That is, for every ϵ > 0, there exists k0 ∈ N such that
∀k > k0 =⇒ ∥xk − x∥∞ < ϵ which implies

|xk
j − xj| < ϵ for each j ≥ 1and ∀k > k0. (1)

Since xk
j ∈ c0 =⇒ limj→∞ xk

j = 0 for each k. For ϵ > 0, there exists j0 ∈ N such that

|xk
j | < ϵ ∀j ≥ j0 and k ≥ k0. (2)

It follows from (1) and (2) that

|xj| < |xk0
j − xj| + |xk0

j | < 2ϵ ∀j > J0,

i.e., |xj| < 2ϵ for all j > J0, which means limj→∞ xj = 0. Hence c0 is a closed subspace of
ℓ∞. Thus, c0 is complete in its own right.
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Example 1.4.10. The space (C[a, b], ∥ · ∥∞) is a complete normed linear space.
Let (fn) be a Cauchy sequence in (C[a, b], ∥ · ∥∞). Then for ϵ > 0, there exists n0 ∈ N

such that ∀n,m ≥ n0 =⇒ ∥fn − fm∥∞ < ϵ which implies

|fn(t) − fn0(t)| < ϵ ∀n ≥ n0, ∀t ∈ [a, b]. (1)

So (fn(t)) is a Cauchy sequence in (R, u) for each fixed t ∈ [a, b]. Hence fn(t) → f(t).
Letting n → ∞ in (1), we get |f(t) − fn0(t)| ≤ ϵ ∀t ∈ [a, b]. (Notice that n0 is free of
choice of t). Since fn0 is continuous, for each fixed t and ϵ > 0, there exists δ > 0 such
that |s− t| < δ implies |fn0(s) − fn0(t)| < ϵ. Hence,

|f(s) − f(t)| < |f(s) − fn0(s)| + |fn0(s) − fn0(t)| + |fn0(t) − f(t)|
< 3ϵ

So f is continuous on [a, b].
However, the space (C[a, b], ∥ · ∥1) is not complete. For this, we consider the following:
Consider

fn(t) =
nt 0 ≤ t < 1

n

1 1
n

≤ t ≤ 1

It is easy to see that for 1
m
< 1

n
,

∥fn − fm∥1 =
(∫ 1/m

0
+
∫ 1/n

1/m
+
∫ 1

1/n

)
|fn(t) − fm(t)|dt

=
∫ 1/m

0
(mt− nt)dt+

∫ 1/n

1/m
(1 − nt)dt+

∫ 1

1/n
(1 − 1)dt

= 1
2

( 1
m

− 1
n

)
→ 0 as n < m → ∞

Thus (fn) is a Cauchy sequence in (C[0, 1], ∥ · ∥1). But the pointwise limit:

f(t) = lim
n→∞

fn(t) =
1 0 < t ≤ 1

0 t = 0

(Hint: fn(0) = 0 and fn(1) = 1 for all n, so f(0) = 0 and f(1) = 1. For 0 < t0 < 1, we
can find large n such that 0 < 1

n
< t0 < 1. Hence fn(t0) = 1 for large n. Thus f(t0) = 1.)

However, f is not continuous, hence (C[0, 1], ∥ · ∥1) is not complete.

1.4.1 Dense subsets and separability
A set A ⊂ (X, d) is said to be dense in X if Ā = X. (that is, ∀x ∈ X, ∃xn ∈ A such that
xn → x, or ∀x ∈ X, Bϵ(x) ∩ A ̸= ∅, ∀ϵ > 0.)
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Example 1.4.11. Q = R with usual metric u(x, y) = |x− y|.
Let x ∈ R, x = [x] + α, 0 < α < 1. But α = 0.x1x2 . . . with xi ∈ {0, 1, 2, . . . , 9}.
implies x = x0 + x1

10 + x2
102 + · · · ∞. Let xn = x0 + x1

10 + · · · + xn

10n . Then xn ∈ Q, and

|x− xn| = xn+1

10n+1 + · · · → 0.

Thus xn ∈ Q and xn → x ∈ R.

Example 1.4.12. If 1 ≤ p < ∞, then c00 = ℓp.
Let x ∈ ℓp, x = (x1, x2, . . . , xn, . . .). Write Xn = (x1, x2, . . . , xn, 0, 0, . . .). Then Xn ∈

c00, ∀n ≥ 1. Now,

∥x−Xn∥p =
( ∞∑

k=n

|xk+1|p
) 1

p

→ 0 as n → ∞

Thus, Xn → x.

Example 1.4.13. c00 = c0. Let x ∈ c0. Then x = (x1, x2, . . . , xn, . . .) and limn→∞ xn = 0.
For ϵ > 0, ∃N ∈ N such that |xn| < ϵ

2 , ∀n ≥ N · · · (1).
Write Xn = (x1, x2, . . . , xn, 0, 0, . . .), n ≥ N . Then Xn ∈ c00 and

∥x−Xn∥∞ = sup
n≥N

|xn+1| ≤ ϵ

2 , ∀n ≥ N (by (1))

Thus, Xn → x.

Remark: c00 = c0 ⊊ ℓ∞. That is, c00 is not dense in ℓ∞.

1.4.2 Continuous maps between metric spaces
A function f : (X, d) → (R, u) is said to be continuous at x0 ∈ X if for all ϵ > 0, there
exist δ > 0 such that d(x0, y) < δ implies |f(x0) − f(y)| < ε.

implies f(Bδ(x0)) ⊆ (f(x0) − ε, f(x0) + ε)

Theorem 1.4.14. Let f : (X, d) → (R, u) or (R, usual metric). Then the following are
equivalent:

(i) f is continuous on X (with ε− δ definition).

(ii) For any sequence xn ∈ X such that xn → x implies f(xn) → f(x).

(iii) f−1(O) is open in (X, d), for every open set O ⊆ R.

(iv) f−1(F ) is closed in (X, d), for every closed set F ⊆ R.
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(Proof is similar as to f : R → R when d → u, u(x, y) → d(x, y).)

Example 1.4.15. For x, y, z ∈ (X, d), we get

|d(x, y) − d(x, z)| ≤ d(y, z) (by triangle inequality)

Thus, for f(y) = d(x0, y)

|f(y) − f(x)| < d(y, z) → 0 as y → z

Hence, f is continuous on (X, d) to (R, u).

1.4.3 Uniform continuity
Definition 1.4.16. A function f : A(⊂ (X, d)) → R is said to be uniformly continuous
on A if for each ϵ > 0, there exists δ > 0 such that for all x, y ∈ A,

d(x, y) < δ =⇒ |f(x) − f(y)| < ϵ

Notice that δ is free of choice of locations of points x, y ∈ A; it only depends on their
separation.

Example 1.4.17. For x0 ∈ X, let f(x) = d(x, x0). Then f is uniformly continuous on X.
(Hint: d(x, x0) ≤ d(x, y) + d(y, x0) =⇒ f(x) − f(y) < d(x, y).) Similarly, by replacing x
with y, it follows.

Example 1.4.18. For x ∈ X, A ⊂ X, define d(x,A) = inf{d(x, a) : a ∈ A}, which is
called the distance of A from x, and is uniformly continuous as a function of x. (Hint:
d(x, a) ≤ d(x, y) + d(y, a).) Thus, d(x,A) ≤ d(x, y) + d(y, A) and so,

|f(x) − f(y)| ≤ d(x, y) (∵ x ↔ y)

Example 1.4.19. The function f : (0, 1) → R given by f(x) = 1
x

is continuous on (0, 1),
but not uniformly continuous.

Let x0 ∈ (0, 1). Then for ϵ > 0, there exists n ∈ N such that (x0 − ϵ
n
, x0 + ϵ

n
) ⊂ (0, 1).

Suppose
∣∣∣ 1

x0
− 1

y

∣∣∣ < ϵ for y ∈ (x0 − ϵ
n
, x0 + ϵ

n
) =: Ix0 . Then |x0 − y| < ϵx0y. Let

δ = miny∈Ix0
{ϵx0y} = ϵx0(x0 − ϵ/n) > 0. If |x0 − y| < δ. Then∣∣∣∣∣ 1

x0
− 1
y

∣∣∣∣∣ = |x0 − y|
x0y

<
δ

x0y
≤ ϵx0(x0 − ϵ/n)

x0y
< ϵ.

Hence, f is continuous at each x0 ∈ (0, 1).
f is not uniformly continuous: Let ϵ = 1

2 , x = 1
n
, y = 1

n+1 , n ∈ N. Then for any δ > 0,
there exists n0 ∈ N such that

|x− y| =
∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ < δ
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but
|f(x) − f(y)| = 1 ≮

1
2 .

Hence, f is not uniformly continuous on (0, 1). From the above argument, we can prove
the following result.

Theorem 1.4.20. Let f : A(⊂ (X, d)) → R. Then f is uniformly continuous on A if and
only if for every pair of sequences xn, yn ∈ A with d(xn, yn) → 0, implies |f(xn)−f(yn)| →
0.

Proof. Suppose f is uniformly continuous on A. Then for any ϵ > 0, there exists δ > 0
such that

d(x, y) < δ =⇒ |f(x) − f(y)| < ϵ. (1)

Let xn, yn ∈ A such that d(xn, yn) → 0. Then for δ > 0, there exists n0 ∈ N such that for
all n ≥ n0,

d(xn, yn) < δ =⇒ |f(xn) − f(yn)| < ϵ. (from (1)),

That is, if d(xn, yn) → 0, then |f(xn) − f(yn)| → 0. Conversely, suppose that f is not
uniformly continuous. Then there exists ϵ0 > 0 such that for every δ > 0 there exist
x, y ∈ A with d(x, y) < δ but |f(x) − f(y)| ≥ ϵ0. Now, let δ = 1

n
for n ∈ N. Then there

exist xn, yn ∈ A such that

d(xn, yn) < 1
n
, ∀n ∈ N, but |f(xn) − f(yn)| ≥ ϵ0.

That is, d(xn, yn) → 0 but lim|f(xn) − f(yn)| ≥ ϵ0, is a contradiction. Hence, f is
uniformly continuous.

Exercise 1.4.21. Show that a uniformly continuous function on a metric space (X, d)
sends Cauchy sequences to Cauchy sequences. (Hint: If f : (X, d) → R is uniformly
continuous, so for d(xn, xm) → 0 =⇒ |f(xn) − f(xm)| → 0.)

Theorem 1.4.22. Let f : [a, b] → R be a continuous function. Then f is uniformly
continuous.

Proof. On contrary, suppose f is not uniformly continuous on [a, b]. Then there exists
ϵ0 > 0 such that for every δ > 0, there exist x, y ∈ [a, b] with |x−y| < δ but |f(x)−f(y)| ≥
ϵ0. For δ = 1

n
, there exist xn, yn ∈ [a, b] such that |xn − yn| < 1

n
but |f(xn) − f(yn)| ≥ ϵ0.

By the Bolzano–Weierstrass theorem, xn, yn have convergent subsequences, say xnk
→ x

and ynk
→ y. Now,

|x− y| = lim
k→∞

|xnk
− ynk

| ≤ lim
k→∞

1
nk

= 0,

so x = y. Since f is continuous, f(xnk
)−f(ynk

) → f(x)−f(y) = 0, but |f(xnk
)−f(ynk

)| ≥
ϵ0, contradiction.
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Example 1.4.23. Let f : R → R be continuous such that lim|x|→∞ f(x) = 0. Then f is
uniformly continuous.

Proof. For ϵ > 0, there exists [−a, a] such that |f(x)| < ϵ/2 if x ∈ [−a, a]c. Hence, if
x, y ∈ [−a, a]c, then

|f(x) − f(y)| < ϵ

2 + ϵ

2 = ϵ (1)

Since f is uniformly continuous on [−a, a]. For ϵ > 0, there exists δ > 0 such that

|x− y| < δ =⇒ |f(x) − f(y)| < ϵ (2)

Since (1) holds true for x, y with |x − y| < δ. It follows that for ϵ > 0, we get δ > 0
such that |x − y| < δ =⇒ |f(x) − f(y)| < ϵ (for any x, y ∈ R). Hence, f is uniformly
continuous on R.

Notice that if f ∈ C0(R), that is f is continuous and lim|x|→∞ f(x) = 0 and hence f is
uniformly continuous. But if f is continuous and bounded, then f need not be uniformly
continuous on R.

Example 1.4.24. f(x) = sin x2, which is continuous and bounded but not uniformly
continuous on R. (Hint: Take x2 = nπ and y2 = nπ + 1

2π.)

Example 1.4.25. Let f : R → R be a bounded continuous function. If f is monotone,
then f is uniformly continuous on R. Since f is bounded, let inf f(x) = L, sup f(x) =
M. For ϵ > 0, there exist x0, y0 ∈ R such that f(x0) < L+ ϵ and f(y0) > M − ϵ.
If f is monotone increasing, then for x, y ∈ [x0, y0]c and x, y ≥ y0

f(y) − f(x) ≤ M − f(y0) < M − (M − ε) = ε.

Similarly, if x, y ≤ x0 then

f(y) − f(x) ≤ L+ ε− f(x0) < L+ ε− L = ε.

Thus, for x, y ∈ [x0, y0]c, we get |f(x) − f(y)| < ε (1).
Since f is continuous on [x0, y0], f is uniformly continuous on [x0, y0]. For any ε > 0,
there exists δ > 0 such that

x, y ∈ [x0, y0], |x− y| < δ =⇒ |f(x) − f(y)| < ε (2)

Notice that (1) also holds for x, y ∈ [x0, y0]c with |x − y| < δ. Thus, we get single δ > 0
such that

|x− y| < δ =⇒ |f(x) − f(y)| < ε
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Exercise 1.4.26. If f : R → R is a bounded continuous function then for f monotone,
it follows that

lim
x→−∞

f(x) = finite, lim
x→+∞

f(x) = finite.

(Hint: For any sequence xn → ∞, f(xn) is bounded and limn→∞ f(xn) = supn f(xn), for
f is increasing.)

Example 1.4.27. Let f : (a, b] → R and f : (b, c) → R be uniformly continuous. Then
f : (a, c) → R is uniformly continuous.

Proof. Since f is uniformly continuous on (a, b] and (b, c), for any ε > 0, there exists δ > 0
such that if x, y ∈ (a, b] or x, y ∈ (b, c) with |x− y| < δ, then |f(x) − f(y)| < ε. Now, let
x, y ∈ (a, c), with |x− y| < δ. Then |x− b| < δ and |y − b| < δ. Hence,

|f(x) − f(y)| < |f(x) − f(b)| + |f(b) − f(y)| < 2ε.

Thus, f is uniformly continuous on (a, c).

We see that a uniformly continuous function can be extended uniformly to the closure of
the set.

Theorem 1.4.28. Let f : A(⊂ R) → R be uniformly continuous on A. Then f can be
extended uniformly to A, and this extension is unique.

Proof. Let x ∈ A. Then there exists xn ∈ A such that xn → x. Now, f(xn) is a
bounded sequence in R. Hence, by Bolzano-Weierstrass theorem, f(xn) has a convergent
subsequence. Without loss of generality we can assume that f(xn) is convergent. Let
f̃(x) = lim f(xn) (∵ lim f(xn) exists ). Notice that f̃ is well defined, because f is uniformly
continuous on A. If xn, yn → x, then xn − yn → 0 =⇒ f(xn) − f(yn) → 0 i.e.
lim f(xn) = lim f(yn) (∵ lim f(xn) and lim f(yn)) both exist). Hence f̃ : A → R is well
defined. Suppose x, y ∈ A and they are close enough to each other. Then there exist
xn, yn ∈ A such that xn → x and yn → y. Hence,

f̃(x) − f̃(y) = f̃(x) − f(xn) + f(xn) − f(yn) + f(yn) − f̃(y)
=⇒ |f̃(x) − f̃(y)| ≤ |f̃(x) − f(xn)| + |f(xn) − f(yn)| + |f(yn) − f̃(y)|

Notice that |f̃(x) − f(xn)| < ε and |f̃(y) − f(yn)| < ε for n ≥ n0 (say). Let |x − y| < δ
(small enough). Then there exists n′ ∈ N such that |xn − yn| < δ for n ≥ n′. Since f
is uniformly continuous on A, it follows that |f(xn) − f(yn)| < ϵ for n ≥ n′. Thus for
sufficiently large n ≥ max(n0, n

′).

|f̃(x) − f(y)| ≤ 3ϵ, where |x− y| < δ.

Hence, f̃ is uniformly continuous on A.
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This extension of f is unique: If there exists g̃ : A → R which is uniformly continuous
and g̃ = f on A, then for x ∈ A, there is a sequence xn ∈ A such that xn → x. Hence,

f̃(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g̃(x)

(∵ g is uniformly continuous extension).

Next, we shall see that uniformly continuous function grows slower than a straight line.

Theorem 1.4.29. Let f : R → R be uniformly continuous,then there exist constants
A,B ≥ 0 such that |f(x)| ≤ A|x| +B for all x ∈ R.

Proof. For any ϵ > 0, there exists δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < 1.
We divide the proof into two parts: one is near ”0” and other is away from ”0”. Let a > 0.
Then |f(x)| ≤ A < ∞ for x ∈ [−a, a]. Now, consider f : [a,∞) → R.Then for x ∈ [a,∞),
we can find n ∈ N such that x ∈ [a+ nδ, a+ (n+ 1)δ]. Then,

f(x) − f(a) = f(x) − f(a+ nδ) + f(a+ nδ) − f(a)

= f(x) − f(a+ nδ) +
n∑

j=1
[f(a+ jδ) − f(a+ (j + 1)δ)]

⇒ |f(x)| < 1 + n+ |f(a)|

⇒
∣∣∣∣∣f(x)
x

∣∣∣∣∣ < (n+ 1) + |f(a)|
a+ nδ

<
(n+ 1) + |f(a)|

nδ
<
(

1 + 1
n

) 1
δ

+ |f(a)|
nδ

≤ B < ∞.

Notice that B is independent of n, hence B is independent of x. That is, |f(x)| ≤ B|x| if
x > a. Hence, we can summarize that |f(x)| ≤ B|x| + A for all x ∈ R.

Example 1.4.30. Notice that f(x) = x2 is not uniformly continuous on R, as it cannot
satisfies the conclusion of the above theorem.

Example 1.4.31. Let f : R → R be differentiable and its derivative is bounded. Then f
is uniformly continuous on R. For any x, y ∈ R, by the Mean Value Theorem,

|f(x) − f(y)| = |f ′(t)(x− y)| ≤ M |x− y|

where t is between x and y, and M is an upper bound for |f ′(t)|. However, f(x) =
√
x

for x ∈ (0,∞) is uniformly continuous, but its derivative is f ′(x) = 1
2
√

x
, is not bounded.

Example 1.4.32. Let f : (X, d) → R be uniformly continuous, then f sends Cauchy
sequence in X to Cauchy sequence in R.

Let (xn) be a Cauchy sequence in (X, d). Since f is uniformly continuous, for ε > 0,
there exists δ > 0 such that d(x, y) < δ implies |f(x) − f(y)| < ε. For δ > 0, there exists
N ∈ N such that d(xn, xm) < δ for all n,m ≥ N , implies |f(xn) − f(xm)| < ε, ∀n,m ≥
N . Therefore, (f(xn)) is a Cauchy sequence in R.
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1.4.4 Compactness in metric spaces
Definition 1.4.33. Let (X, d) be a metric space. A subset K ⊂ X is called compact if
every open cover of K admits a finite subcover.

Theorem 1.4.34 (Sequential compactness). If (X, d) is a metric space and K ⊂ X, then
K is compact if and only if every sequence in K has a convergent subsequence with limit
in K.

Remark 1.4.35. In Rn equipped with the Euclidean metric, the Heine–Borel theorem
asserts that a set is compact if and only if it is closed and bounded.

Theorem 1.4.36. Every compact metric space is complete. Moreover, if f : X → Y is
continuous, then f(K) is compact whenever K is compact.

Proof. If (xn) is a Cauchy sequence in a compact metric space, then (xn) has a convergent
subsequence (xnk

) → x. The Cauchy property forces xn → x, proving completeness. The
continuous image statement follows from the open-cover definition.

1.4.5 The contraction mapping principle
Fixed point searching is an idea to solve equation of the form φ(x) = x. This helps
solving a range of problems, including approximation theory, differential equations etc.
Fixed points can be obtained via iterations, i.e. if the function "shrinks nicely", then we
get fixed points via iteration. That is, if x0 is a point in the space X, then x0 → φ1(x0) →
φ2(x0) → · · · where φn denotes n-times composition of φ. If the sequence (φn(x0)) is
convergent and φ is continuous, then φn(x0) → x and thus φ(x) = φ(limn→∞ φn(x0)) = x.
However, if the space is complete, we only need to verify φn(x0) to be a Cauchy sequence.
Nicely shrinking function, we mean here with contraction mapping.

Definition 1.4.37. A function φ : (X, d) → (X, d) is called contraction if there exists
0 < α < 1 such that

d(φ(x), φ(y)) ≤ α d(x, y), ∀x, y ∈ X.

Theorem 1.4.38. Let (X, d) be a complete metric space. If φ : (X, d) → (X, d) is a
contraction, then φ has a unique fixed point.

Proof. Let 0 < α < 1 be such that

d(φ(x), φ(y)) ≤ α d(x, y), ∀x, y ∈ X.

For a point x0 ∈ X, let

φ0(x0) = x0, φ1(x0) = φ(x0) etc.

Then
d(φn+1(x0), φn(x0)) ≤ α d(φn(x0), φn−1(x0)) ≤ αnd(φ(x0), x0).



1.4. COMPLETE METRIC SPACES 31

We show that φn(x0) is a Cauchy sequence. Let m > n. Then

d(φn(x0), φm(x0)) ≤ (αn + · · · + αm−1) d(φ(x0), x0)

≤ αn

1 − α
d(φ(x0), x0) (∵ 0 < α < 1)

→ 0 as n → ∞.

Since (X, d) is complete, φn(x0) → x ∈ X (say).

=⇒ φ(x) = φ
(

lim
n→∞

φn(x0)
)

= lim
n→∞

φn+1(x0)

=⇒ φ(x) = x.

If ∃y ∈ X such that φ(y) = y, then

d(x, y) = d(φ(x), φ(y)) ≤ αd(x, y)

⇐⇒ x = y (∵ 0 < α < 1)
This establishes that φ has unique fixed point.

Remark: If Ω ⊂ Rn is open, then any contraction mapping f : Ω → Ω can have at
most one fixed point.

Notice that completeness property of the space is a sufficient condition for existence
of fixed point. For example,

φ : (0,∞) → (0,∞)

φ(x) = 1
2(x+ a

x
), a > 0

satisfies φ(
√
a) =

√
a.

Notice that φ above is not a contraction mapping, since

|φ(x) − φ(y)| = 1
2 |1 − a

xy
| |x− y|

because the function |1 − a
xy

| is not bounded near zero.

Example 1.4.39. φ : (0, 2π) → (0, 2π), φ(x) = sin x
2 .

|φ(x) − φ(y)| ≤ 1
2 |x− y| (By Mean Value Theorem)

Thus, φ is a contraction mapping, but φ has no fixed point in (0, 2π).

Exercise 1.4.40. If (X, d) is a complete metric space and f : X → X is such that fk is
a contraction, then show that f has a unique fixed point. (Hint: do for k = 2, use the
fact that fk cannot have two fixed points. If f 2(x0) = x0 and y0 = f(x0)(say), implies
that f(y0) = y0 =⇒ y0 = x0).
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Exercise 1.4.41. Let T : C[0, 1] → C[0, 1] be defined by

T (f)(x) =
∫ x

0
f(t)dt.

Show that T 2 is a contraction but T is not a contraction.

Notice that the above fact in these example is also clear from the fact that in the
convergence of φn(x0), we can ignore finitely many steps.
Now, we shall try to understand the existence and uniqueness of the initial value problem:y′ = f(x, y)

y(0) = y0
(*)

with the help of fixed point theorem.
Suppose f is a continuous function in some rectangle containing the interval (0, y0) in its
interior, and f is Lipschitz in the second variable, i.e.,

|f(x, y1) − f(x, y2)| ≤ K|y1 − y2|,

where K is a fixed constant. Then the equation (*) has a unique solution in some neigh-
borhood of x = 0. Notice that solving (∗) is equivalent to solve∫ x

0
y′(t)dt =

∫ x

0
f(t, y(t))dt

i.e.,
y(x) = y0 +

∫ x

0
f(t, y(t))dt (**)

That is, we want y(t) such that (**) holds. In other words, we want to get fixed point for
the map φ 7→ F (φ), where

F (φ)(x) = y0 +
∫ x

0
f(t, φ(t))dt,

with φ ∈ C[−δ, δ] for some δ > 0, which we get very soon. Now,

|F (φ)(x) − F (ψ)(x)| ≤
∫ x

0
|f(t, φ(t)) − f(t, ψ(t))|dt,

≤ K
∫ x

0
|φ(t) − ψ(t)|dt

≤ K · 2δ · ∥φ− ψ∥∞.

Thus, F : C[−δ, δ] → C[−δ, δ] is a contraction as long as 2Kδ < 1, i.e. if δ < 1
2K

. Hence
F has a unique fixed point in C[− 1

2K
, 1

2K
]. That is, (*) has a unique solution in |x| < 1

2K
.
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Example 1.4.42. Consider y′ = 2x(1 + y), y(0) = 0. Then

φ(x) =
∫ x

0
2t(1 + φ(t))dt.

With the initial guess φ0 ≡ 0, we get

φ1(x) =
∫ x

0
2t(1 + 0) dt = x2,

φ2(x) =
∫ x

0
2t(1 + t2) dt = x2 + x4

2 ,

φ3(x) = x2 + x4

2 + x6

6 .

Thus, by induction,

φn(x) =
n∑

k=1

x2k

k! −→ ex2 − 1, (*)

and φ(x) = ex2 − 1 is a solution, which is same as method of separation of variables.
Notice that the series (*) converges uniformly on every interval [−a, a], or on any interval
[a, b]. On the other hand, φ′(x) = 2x(1 + φ(x)) has unique solution in neighborhood of
any point x0, i.e., [x0 − δ, x0 + δ] with δ < 1

4 . (Hint: Lipschitz constant = 2.)

1.5 Uniform convergence

1.5.1 Uniform convergence of sequences of functions
Notice that in the previous exercises, we have seen that (C([0, 1]), ∥ · ∥∞) is complete.
That is, if ∥fn − fm∥∞ → 0, then there exists f ∈ C([0, 1]) such that ∥fn − f∥∞ → 0. But
then,

|fn(t) − f(t)| < ∥fn − f∥∞ → 0, ∀t ∈ [0, 1],
i.e., fn(t) → f(t) for each t ∈ [0, 1]. We say that fn → f uniformly if

sup
t

|fn(t) − f(t)| → 0.

But there are sequence of functions which converge pointwise but not uniformly.

Example 1.5.1. Let fn(t) = tn, t ∈ [0, 1]. Then,

f(t) = lim
n→∞

fn(t) =
0 0 ≤ t < 1

1 t = 1

So,
sup

t
|fn(t) − f(t)| = 1 ̸→ 0.
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Example 1.5.2. Let fn : R → R be given by

fn(t) = e−nt2
, n ∈ N

Then,

f(t) = lim
n→∞

fn(t) =
1 t = 0

0 |t| > 0

Notice that for t = 0, |fn(0) − f(0)| = |1 − 1| = 0 < ϵ, ∀n ∈ N If |t0| > 0, t20 > 0. Then
for |fn(t0) − 0| < ϵ, we get

e−nt2
0 < ϵ =⇒ n >

log 1
ϵ

t20

Let n0 =
⌈

log 1
ϵ

t2
0

⌉
+ 1. Then, |fn(t0) − f(t0)| < ϵ for n ≥ n0

Notice that n0 = n0(ϵ, t0) and n0 is large for |t0| close to zero. Thus, n0 cannot be free
from t0. Therefore, fn → f pointwise but not uniformly. Also,

∥fn − f∥∞ = sup
t∈R

e−nt2 = 1 ̸→ 0

If fn(t) = e−nt for t ∈ [1,∞), then

sup
t

|fn(t) − 0| = e−n → 0 =⇒ e−nt unif.−−−→
[1,∞)

0

Exercise 1.5.3. Let fn, f : A(⊆ R) → R be such that fn → f uniformly on A. Then for
|fn(t)| ≤ Mn (i.e. fn’s are bounded), that implies f is bounded.
(Hint: |f(t)| ≤ |fn0(t) − f(t)| + |fn0(t)| < ϵ+Mn0 < ∞ ∀t ∈ A)

We shall see later that uniform convergent sequences is a good carrier for many un-
derline properties.

Theorem 1.5.4. Let f, fn : A(⊂ R) → R be such that fn → f uniformly. Then f
is continuous if fn’s are continuous (i.e. the uniform limit of a sequence of continuous
functions is continuous).

Proof. For ϵ > 0, there exists n0 ∈ N such that supt∈A |fn0(t) − f(t)| < ϵ Thus,

|fn0(t) − f(t)| < ϵ, ∀t ∈ A

Since fn0 is continuous on A, for fixed t and for ϵ > 0, there exists δ > 0 such that if
|t− s| < δ =⇒ |fn0(t) − fn0(s)| < ϵ. Thus,

|f(s) − f(t)| < |f(s) − fn0(s)| + |fn0(s) − fn0(t)| + |fn0(t) − f(t)| < 3ϵ
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Theorem 1.5.5. Let R[a, b] denote the space of all Riemann integrable functions on [a, b].
Let fn, f ∈ R[a, b] and fn → f uniformly. Then,∫ b

a
fn →

∫ b

a
f

that is,
lim

n→∞

∫ b

a
fn =

∫ b

a
lim

n→∞
fn

Proof. ∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣ ≤
∫ b

a
|fn − f | ≤ ∥fn − f∥∞(b− a) → 0

Corollary 1.5.6. If fn ∈ R[a, b] such that Sn = f1 + f2 + . . .+ fn converges uniformly to
S, then ∫ b

a

∞∑
n=1

fn =
∞∑

n=1

∫ b

a
fn

(Obvious from the previous result).

Theorem 1.5.7. Let fn ∈ C1[a, b] be such that f ′
n → g uniformly. If there exists x0 ∈ [a, b]

such that fn(x0) converges, then there exists f ∈ C1[a, b] such that fn → f uniformly and
f ′ = g.

Proof. Since f ′
n → g uniformly and fn is continuous, g will be continuous. Define

f : [a, b] → R by f(x0) = lim
n→∞

fn(x0)

and

f(x) =
f(x0) +

∫ x
x0
g(t) dt, if x > x0

f(x0) −
∫ x0

x g(t) dt, if x < x0

Then f ′(x) = g(x) for every x ∈ [a, b]. Hence, f ∈ C1[a, b]. Now,

fn(x) − fm(x) = fn(x) − fm(x) − (fn(x0) − fm(x0)) + (fn(x0) − fm(x0))
= (x− x0)(f ′

n(t) − f ′
m(t)) + (fn(x0) − fm(x0))

Therefore,
∥fn − fm∥∞ ≤ (b− a)∥f ′

n − f ′
m∥∞ + |fn(x0) − fm(x0)| → 0,

as n,m → ∞. Hence, (fn) is a Cauchy sequence in (C[a, b], ||·||∞). Therefore, fn converges
uniformly. Again, since f ′

n → g = f ′ uniformly, it follows that∫ x

x0
f ′

n(t) dt →
∫ x

x0
f ′(t) dt.



36 CHAPTER 1. METRIC AND NORMED LINEAR SPACES

lim
n→∞

[fn(x) − fn(x0)] = f(x) − f(x0)

lim
n→∞

fn(x) = f(x) (∵ lim
n→∞

fn(x0) = f(x0))

Remark 1.5.8. Convergence of (fn(x0)) is necessary in the above result. Consider

fn(t) =
√
t+ n, t ∈ [0, 1]

Then fn does not converge at any point of [0, 1], but

f ′
n(t) = 1

2
√
t+ n

unif.−−→ 0

Since
sup

t∈[0,1]
|f ′

n(t) − 0| = sup
t∈[0,1]

1
2
√
t+ n

= 1
2
√
n

→ 0.

Exercise 1.5.9. Let fn : R → R. Check for uniform convergence of fn to some f :

1. fn(t) = sin(nt)√
n

.

2. fn(t) = n2t(1 − t2)n.

3. fn(t) = te−nt.

Also, verify for term-by-term integration and differentiation for each of the above.

Theorem 1.5.10. Let E ⊆ R, and fn → f uniformly on E. For a limit point x of E.
Suppose

lim
t→x

fn(t) = An (finite) (*)

Then (An) is convergent and
lim
t→x

f(t) = lim
n→∞

An.

That is,
lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Proof. Since fn → f uniformly on E. For each ϵ > 0, there exists n0 ∈ N such that

|fn(t) − fm(t)| < ϵ, ∀n,m ≥ n0, ∀t ∈ E (*)

By (*), it implies that |An −Am| < ϵ, ∀n,m ≥ n0. So (An) is Cauchy, hence convergent
=⇒ An → A (Say). Now,

|f(t) − A| = |f(t) − fn(t) + fn(t) − An + An − A|
≤ |f(t) − fn(t)| + |fn(t) − An| + |An − A|
< ϵ+ ϵ+ ϵ
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for t ∈ (x− δ, x+ δ) \ x and n ≥ n0 ( free of t)

lim
t→x

f(t) = A = lim
n→∞

An

Thus, lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Theorem 1.5.11. Let fn : [a, b] → R be such that (f ′
n) converges uniformly. If there

exists x0 ∈ [a, b] such that (fn(x0)) is convergent, then (fn) is uniformly convergent, and

lim
n→∞

f ′
n(x) =

(
lim

n→∞
fn(x)

)′

(i.e. limit and derivative commute).

Proof. The first part of the proof is as earlier. By the Mean Value Theorem, it follows
that

|fn(x) − fm(x)| ≤ (b− a)∥f ′
n − f ′

m∥ + |fn(x0) − fm(x0)|

Since f ′
n converges uniformly and fn(x0) is convergent, it follows that fn → f (say)

uniformly.
Claim: limn→∞ f ′

n(x) = f ′(x).
Notice that f ′

n need not be continuous, hence Fundamental Theorem of Calculus cannot
be applied. Therefore, we need to exploit the differentiability of f . For x ∈ [a, b], define

φn(t) = fn(x) − fn(t)
x− t

, t ∈ [a, b] \ {x}

Then
limφn(t) = f(x) − f(t)

x− t
=: φ(t)

Notice that limt→x φn(t) = f ′
n(x) (finite). Also,

|φn(t) − φm(t)| = |f ′
n(x) − f ′

m(x)| < ϵ (by MVT)

for n,m ≥ n0 and for all t ∈ [a, b] \ {x}. Thus, φn → φ uniformly on [a, b] \ {x}. Apply
previous theorem with E = [a, b]. Then,

lim
n→∞

f ′
n(x) = lim

n→∞
lim
t→x

φn(t) = lim
t→x

lim
n→∞

φn(t) = lim
t→x

φ(t) = f ′(x).

Thus,
lim

n→∞
f ′

n(x) =
(

lim
n→∞

fn(x)
)′
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1.5.2 Term-by-term differentiation

Let Sn = f1 + f2 + · · · + fn, where each fi : [a, b] → R such that S ′
n

unif−−→ S and
Sn(x0) → L. Then, lim(S ′

n) = (limSn)′. That is,

f ′
1 + f ′

2 + · · · + f ′
n + · · · = (f1 + f2 + · · · + fn + · · · )′.

This raises a very fundamental question: When does(∫ x

a
f(t) dt

)′
=
∫ x

a
f ′(t)dt (**)

hold? Notice that if f ′ is continuous then for

F (x) =
∫ x

a
f ′(t) dt,

by the Fundamental Theorem of Calculus, F ′(x) = f ′(x).

(F − f)′ = 0

By the Mean Value Theorem, F − f is constant. So F (x) = f(x) − f(a) (∵ F (a) = 0).
However, if f ′ is not continuous, i.e. f ′ ∈ R[a, b] , then (∗∗) need not be true.

Consider the sequence fn : A ⊂ R → R. We say fn converges to f : A ⊂ R → R
pointwise if for any t0 ∈ A, and ∀ε > 0, ∃N ∈ N such that

|fn(t0) − f(t0)| < ε, ∀n ≥ N

Notice that N = N(ε, t0).

Example 1.5.12. fn : R → R, fn(t) = e−nt2
, n ∈ N. Then

f(t) =
1 t = 0

0 |t| > 0

|fn(0) − f(0)| = |1 − 1| = 0 < ε, ∀n ≥ 1

Now, if |t0| > 0, t20 > 0. Then for

|fn(t0) − 0| < ε implies e−nt2
0 < ε

implies n >
log 1

ε

t20

Let N0 =
⌈

log 1
ε

t2
0

⌉
+ 1. Then N0 = N(ε, t0) and N0 is larger when |t0| is close to 0. Thus,

N0 cannot be free of t0.
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However, if it happens that N0 is free of choice of t0 ∈ A. Then, we say, fn converges to
f uniformly.
Note: fn → f uniformly if ∀ε > 0, ∃N ∈ N such that

|fn(t) − f(t)| < ε, ∀n ≥ N, ∀t ∈ A.

Then
sup
t∈A

|fn(t) − f(t)| ≤ ε, ∀n ≥ N

or
∥fn − f∥∞ ≤ ε, ∀n ≥ N,

So,
∥fn − f∥∞ → 0 as n → ∞

If fn(t) = e−nt2 , t ∈ R, n ∈ N, supt∈R |fn(t) − f(t)| = 1 ̸→ 0. Hence fn → f pointwise but
not uniformly.

Example 1.5.13. If fn, f : A ⊂ R → R be such that fn → f uniformly. Then for
|fn(t)| ≤ Mn implies f is bounded.

|f(t)| ≤ |f(t) − fN(t)| + |fN(t)| < 1 +MN

Example 1.5.14. If fn → f uniformly and fn are continuous/uniformly continuous, then
f is continuous/uniformly continuous.

Theorem 1.5.15. Let fn, f ∈ R[a, b] be such that fn → f uniformly on [a, b]. Then

∫ b

a
fn →

∫ b

a
f

(
lim

∫ b

a
fn =

∫ b

a
lim fn

)

Proof. ∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣ ≤
∫ b

a
|fn − f | ≤ ∥fn − f∥∞(b− a)

Since fn → f uniformly implies ∥fn − f∥∞ < ε, for any ε > 0, for all n ≥ N .
Therefore, ∣∣∣∣∣

∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ < ε(b− a), ∀n ≥ N

Thus, ∫ b

a
fn →

∫ b

a
f
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Corollary 1.5.16. If fn ∈ R[a, b] and Sn = f1 + · · · + fn → S uniformly, then∫ b

a

∑
fn =

∑∫ b

a
fn

(This follows immediately from the previous result.)

Theorem 1.5.17. Let fn ∈ C1[a, b] be such that f ′
n → g uniformly. If there exists

x0 ∈ [a, b] such that fn(x0) converges, then there exists f ∈ C1[a, b] such that fn → f
uniformly and f ′ = g.

Remark 1.5.18. Convergence of (fn(x0)) is necessary in the above result. Consider

fn(t) =
√
t+ n, t ∈ [0, 1]

Then fn does not converge at any point of [0, 1], but

f ′
n(t) = 1

2
√
t+ n

unif.−−→ 0

Since
sup

t∈[0,1]
|f ′

n(t) − 0| = sup
t∈[0,1]

1
2
√
t+ n

= 1
2
√
n

→ 0.

Exercise 1.5.19. Let fn : R → R. Check for uniform convergence of fn to some f :

1. fn(t) = sin(nt)√
n

.

2. fn(t) = n2t(1 − t2)n.

3. fn(t) = te−nt.

Also, verify for term-by-term integration and differentiation for each of the above.



Chapter 2

Function of Several Variables

This chapter extends one-variable calculus to functions on Rn. After fixing notation
and basic limit/continuity concepts, we study partial and directional derivatives and
the precise notion of differentiability via linear approximation. The chain rule is
developed in a form suitable for compositions and coordinate changes. We then
establish Taylor’s theorem as a higher-order approximation scheme, and conclude
with two central structural results: the inverse mapping theorem and the implicit
function theorem, which explain when nonlinear maps are locally invertible and when
level sets can be described as graphs.

2.1 Syllabus map
This chapter develops multivariable calculus from a rigorous analytic viewpoint. We
proceed from limits and continuity to differentiability, and then to the inverse and implicit
function theorems.

2.2 Limits and continuity

2.2.1 Notation and basic definitions in Euclidean space
For n ∈ {1, 2, . . .} = N; Rn = R × R × · · · × R︸ ︷︷ ︸

n copies

. Let x ∈ Rn, then x = (x1, x2, . . . , xn).

Let 0 ∈ Rn, represent as 0 = (0, 0, . . . , 0). For x,y ∈ Rn, λ ∈ R:

x + y = (x1 + y1, x2 + y2, . . . , xn + yn)
λx = (λx1, λx2, . . . , λxn)

41
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Define the standard inner product ⟨·, ·⟩ : Rn × Rn → R given by

⟨x, y⟩ =
n∑

i=1
xiyi = x1y1 + x2y2 + · · · + xnyn

Then inner product ⟨·, ·⟩ satisfies,

(i) ⟨x, x⟩ = x2
1 + x2

2 + · · · + x2
n ≥ 0.

(ii) ⟨x, x⟩ = 0 if and only if x = 0.

(iii) For α, β ∈ R and x, y, z ∈ Rn:

⟨x, αy + βz⟩ = α⟨x, y⟩ + β⟨x, z⟩
⟨αx+ βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩

Therefore, ⟨·, ·⟩ is a bilinear map and is called the inner product.
Let x ∈ Rn. Define the norm:

∥x∥ =
√

⟨x, x⟩ =
√
x2

1 + x2
2 + · · · + x2

n

For x, y ∈ Rn, then

|⟨x, y⟩| ≤ ∥x∥ ∥y∥ (Cauchy-Schwarz inequality).

If x ̸= 0, y ̸= 0, then ∥x∥ ̸= 0, ∥y∥ ̸= 0.∣∣∣∣∣
〈
x

∥x∥
,
y

∥y∥

〉∣∣∣∣∣ ≤ 1

But
∥∥∥ x

∥x∥

∥∥∥ = 1 and
∥∥∥ y

∥y∥

∥∥∥ = 1. We need to prove the inequality when ∥x∥ = 1, ∥y∥ = 1.
For any t ∈ R, ⟨x− ty, x− ty⟩ = ∥x− ty∥2 ≥ 0.
Let P (t) = ⟨x− ty, x− ty⟩. Then

P (t) = ⟨x, x⟩ − 2t⟨x, y⟩ + t2⟨y, y⟩
= 1 − 2t⟨x, y⟩ + t2 · 1 (since ∥x∥ = ∥y∥ = 1)
= t2 − 2t⟨x, y⟩ + 1 ≥ 0

Take t0 = ⟨x, y⟩, then P (t0) = t20 − 2t20 + 1 = 1 − t20 ≥ 0 implies t20 ≤ 1 implies |t0| ≤
1 that is |⟨x, y⟩| ≤ 1.
Notice |⟨x, y⟩| = 1 if and only if x = αy or y = αx for some α ∈ R. Suppose y = αx, then

|⟨x, αx⟩| = |α||⟨x, x⟩| = |α| · 1 · 1

= ∥αx∥.∥x∥ = ∥y∥.∥x∥
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implies |⟨x, αx⟩| = 1

Suppose |⟨x, y⟩| = 1 · · · (1). Claim: y = αx, for some α.
Let p(t) = t2 − 2t⟨x, y⟩ + 1. If we take t0 = ⟨x, y⟩, then

p(t0) = ⟨x, y⟩2 − 2⟨x, y⟩2 + 1 = 0 (by (1))

But p(t0) = ∥x− t0y∥2 = 0 if and only if x = t0y. Thus, x and y are linearly dependent.

Theorem 2.2.1. : |⟨x, y⟩| ≤ ∥x∥ ∥y∥, ∀x, y ∈ Rn and |⟨x, y⟩| = ∥x∥ ∥y∥ if and only if
there exist α ∈ R such that x = αy. that is, x and y are linearly dependent. (Explain
linear dependent sets and so forth).
For x, y ∈ Rn:

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ∥x∥2 + ∥y∥2 + 2⟨x, y⟩
≤ ∥x∥2 + ∥y∥2 + 2∥x∥ ∥y∥ (since|⟨x, y⟩| < ∥x∥∥y∥)
= (∥x∥ + ∥y∥)2

Therefore, ∥x+ y∥ ≤ ∥x∥ + ∥y∥ (Triangle Inequality).

Bolzano-Weierstrass Theorem: Every bounded sequence (an) ⊂ R has a conver-
gent subsequence.

Bolzano-Weierstrass Theorem for R2:
Let {Xn} = {(xn, yn)}. ∥Xn∥ =

√
x2

n + y2
n ≤ M, ∀n ≥ 1.

|xn| ≤
√
x2

n + y2
n ≤ M

|yn| ≤
√
x2

n + y2
n ≤ M

By Bolzano-Weierstrass theorem xnk
→ x and {(xnk

, ynk
)} is bounded. So ynk

is bounded.
So by Bolzano-Weierstrass theorem ynk,l

→ y. Hence, (xnk,l
, ynk,l

) → (x, y).
Rn: Let Xk = (xk

1, x
k
2, . . . , x

k
n). If {Xk} is a bounded sequence in Rn, then there exists a

subsequence {Xkl
} such that Xkl

→ X ∈ Rn.

2.2.2 Limits in Euclidean space
Suppose f : (a, b)(⊂ R) → R. If limh→0 f(x+ h) and limh→0 f(x− h) both exist and are
equal, then we say the limit at x exists.

Suppose f : D(⊆ R2) → R. lim(x,y)→(0,0) f(x, y) = finite and equal along all paths joining
(x, y) and (0, 0). Let x = r cos θ, y = r sin θ, so (x, y) → (0, 0) if and only if x2 + y2 →
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0 that is r2 → 0 or r → 0 (sincer > 0). limr→0 f(r cos θ, r sin θ) = finite, we say
limit at (0, 0) exists.

Let D = (a1, b1) × · · · × (an, bn), and f : D(⊆ Rn) → Rm, f(X) = f(x1, x2, . . . , xn) =
(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)). Then f is said to be continuous at X ∈ D, if for every
ε > 0, there exists δ > 0 such that Y ∈ D with ∥X − Y ∥ < δ implies ∥f(X) − f(Y )∥ < ε

implies
(

m∑
i=1

|fi(X) − fi(Y )|2
)1/2

< ε

implies |fi(X) − fi(Y )| < ε, ∀i = 1, 2, . . . ,m

Thus, f continuous at X implies each component fi is continuous at X.
Conversely, if each fi for i = 1, 2, . . . ,m is continuous, then for ε > 0, there exists

δ > 0 such that ∥X − Y ∥ < δ implies |fi(X) − fi(Y )| < ε√
m

implies ∥f(X) − f(Y )∥ < ε.
Thus, it is enough to consider f : R2 → R for questions result regarding f : Rn → Rm.

2.2.3 Continuity in Euclidean space
Definition 2.2.2. Let D(⊆ R2) and f : D → R. Then f is said to be continuous at
X0 = (x0, y0) ∈ D, if for every ε > 0, there exists δ > 0 such that for all X = (x, y) ∈ D,
∥X −X0∥ < δ implies |f(X) − f(X0)| < ε that is, limX→X0 f(X) = f(X0)

Negation of Continuity: ∃ε0 > 0 such that ∀δ > 0, ∃X ∈ D such that ∥X − X0∥ <
δ but |f(X) − f(X0)| ≥ ε0.

Proposition 2.2.3. If f : D(⊂ R2) → R is continuous at X0 if and only if for every
sequence Xn → X0, implies f(Xn) → f(X0).

Proof. Let X0 = (x0, y0), Xn = (xn, yn). Suppose f is continuous at X0. Then for each
ε > 0, there exists δ > 0 such that

∥X −X0∥ < δ implies |f(X) − f(X0)| < ε. (1)

Let Xn → X0. Then for δ > 0, there exists n0 ∈ N such that

n ≥ n0 implies ∥Xn −X0∥ < δ implies |f(Xn) − f(X0)| < ε (by (1)) (2)

Thus, Xn → X0 =⇒ f(Xn) → f(X0).
Conversely, suppose (2) holds, but f is not continuous at X0, then ∃ ε0 > 0 such that

∀ δ > 0, there exists X ∈ D such that ∥X − X0∥ < δ but |f(X) − f(X0)| ≥ ε0. Take
δ = 1

n
> 0, then there exists Xn ∈ D such that ∥Xn −X0∥ < 1

n
but |f(Xn) − f(X0)| ≥

ε0. So Xn → X0, but f(Xn) ̸→ f(X0).
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Example 2.2.4. Define

f(x, y) =
1 if xy ̸= 0

0 otherwise
Then lim

(x,y)→(0,0)
f(x, y) does not exist. But if xy ̸= 0 is replaced by xy = 1, it exists.

Exercise 2.2.5. Let f : R2 → R, check the continuity of f at (0, 0).

1. f(x, y) =


xy√
x2 + y2 if x2 + y2 ̸= 0

0 otherwise

2. f(x, y) = sin2(x− y)√
x2 + y2 , f(0, 0) = 0.

3. f(x, y) =


x2y

x2 + y
if x2 + y ̸= 0

0 otherwise

4. f(x, y) =


x2y

x4 + y2 if x4 + y2 ̸= 0

0 otherwise

5. f(x, y) =


sin xy
xy

if xy ̸= 0

0 otherwise

Using the epsilon-delta definition: Let f(x, y) = xy

x2 + y2 , f(0, 0) = 0. For x = y, f(x, x) =
1
2 . Thus, |f(x, x) − f(0, 0)| = 1

2 . Take ε = 1
4 , then there does not exist any δ > 0 such

that
√
x2 + y2 < δ implies |f(x, y) − f(0, 0)| < 1

4 .

Composition of Two Continuous Functions:
Let f : D(⊂ R2) → R and g : I(⊂ R) → R be continuous, where f(x) ∈ I for each x.

Then g ◦ f is continuous.

Proof. Since f is continuous at x ∈ D, for ε > 0, there exists δ > 0 such that

∥x− y∥ < δ implies |f(x) − f(y)| < ε. (1)

Similarly, g is continuous at f(x), so for η > 0, there exists µ > 0 such that

|t− f(x)| < µ implies |g(t) − g(f(x))| < η.

Given ε > 0, choose η = ε. Then from (1), ∥x − y∥ < δ implies |g(f(x)) − g(f(y))| < η.
Thus, g ◦ f is continuous at x.
Alternatively, let xn → x, then f(xn) → f(x) and hence g(f(xn)) → g(f(x)).
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Example 2.2.6.

f(x, y) =


sin xy
xy

if xy ̸= 0

1 otherwise

f(x, y) = p ◦ g(x, y), where p(t) =


sin t
t

t ̸= 0
1 t = 0

2.3 Differentiation in Rn

2.3.1 Partial derivatives
Let D = (a, b) × (c, d) (or in general open set in R2). Let f : D → R. Let x0 = (x0, y0),

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0) − f(x0, y0)
h

If this exists, we say f has partial derivative parallel to the x-axis at (x0, y0), and we
denote it by ∂f

∂x
(x0, y0) = fx(x0, y0). In other words, for ϵ > 0, there exists δ > 0 such that

|h| < δ implies
∣∣∣∣∣f(x0 + h, y0) − f(x0, y0)

h
− fx(x0, y0)

∣∣∣∣∣ < ϵ

f(x0 + h, y0) − f(x0, y0) = hfx(x0, y0) + hη(h)
where η(h) → 0 as h → 0 (let hη(h) = γ(h)). f(x0 +h, y0)−f(x0, y0) = hfx(x0, y0)+γ(h)
where γ(h) → 0 as h → 0.

Similarly, f(x0, y0 + k) − f(x0, y0) = kfy(x0, y0) + γ(k) where γ(k) → 0 as k → 0.
Note: From the accompanying graph, one sees that the existence of the partial derivative
in the direction parallel to the x-axis depends only on the values of f along an appropriate
line segment through (x0, y0); it does not require f to be defined on an open disk around
(x0, y0).

Example 2.3.1. f(x, y) = xy

x2 + y2 , f(0, 0) = 0. Then fx(0, 0) = 0 = fy(0, 0) but f is not
continuous at (0, 0).

2.3.2 Directional derivatives
Directional derivative is the rate of change of a function parallel to a given direction.

Let x0 ∈ D (rectangle or open set) and f : D(⊂ R2) → R. Let v = (v1, v2), |v| =√
v2

1 + v2
2 = 1. Then the directional derivative of f at x0 along v is defined by

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t
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Note: The existence of the directional derivative of f at x0 in the direction v depends
only on the values of f along a line segment through x0 parallel to v; it does not require
f to be defined on an open neighborhood of x0.

Example 2.3.2.

f(x, y) =


x2y
x4+y2 if x4 + y2 ̸= 0
0 otherwise

Dvf(0, 0) = lim
t→0

t2v2
1v2

t4v4
1 + t2v2

2
=
0 v2 = 0

v2
1

v2
1

v2 ̸= 0

But f is not continuous at (0, 0), for y = mx and so forth.

Example 2.3.3. Let D = (a, b) × (c, d) (or open convex set in R2), that is, (x, y ∈
D implies λx + (1 − λ)y ∈ D, ∀λ ∈ [0, 1]). Suppose f : D(⊂ R2) → R such that
fx(x, y) = 0 = fy(x, y), ∀x, y ∈ D. Then f is constant.

Since D is convex, (a, s) × {y} ⊂ D. Thus,∫ s

a
fx(x, y)dx = 0

f(s, y) = f(a, y)
Let g(y) = f(a, y). Then 0 = ∂

∂y
f(s, y) = g′(y) implies

∫ t
c g

′(y)dy = 0 implies g(y) =
g(c). Thus, f(s, y) = f(a, y) = g(y) = g(c) for all (s, y) ∈ D implies f is constant on D.
Remark: A similar proof will work for D open and convex.

2.3.3 Differentiability
Let D be an open set in R2. Let H = (h, k), X0 = (x0, y0). Then f is said to be
differentiable at X0 ∈ D if there exists L ∈ R2 such that

ϵL(H) = f(X0 +H) − f(X0) − L ·H
∥H∥

→ 0 as ∥H∥ → 0. (*)

Notice that, since we need limit in (∗) exists in a δ-neighborhood of X0, it means f is
differentiable along all directions including parallel to x-axis and y-axis.
The vector L is unique. Suppose not, then there exist M ∈ R2 such that (*) holds. Thus,

(L−M) ·H
∥H∥

= ϵL(H) − ϵM(H) → 0 as ∥H∥ → 0.

Set H = tV , V ̸= 0 in R2. Then,

lim
t→0

|t| |(L−M) · V |
|t|∥V ∥

= 0 implies |(L−M) · V | = 0, ∀V ∈ R2
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Consider V = L − M , then ∥L − M∥ = 0 implies L = M . Hence, the derivative of f
at X0 is unique and we write L = f ′(X0). Since ϵ(H) = f(X0+H)−f(X0)−H·f ′(X0)

∥H∥ → 0 as
∥H∥ → 0. Set H = tV , ∥V ∥ = 1.

ϵ(tV ) = f(X0 + tV ) − f(X0) − tV · f ′(X0)
|t|

→ 0

as t → 0. Thus, V · f ′(X0) = DV f(X0). Put V = (1, 0), then DV f(X0) = fx(X0).
Similarly, V = (0, 1), DV f(x0) = fy(X0).
Example 2.3.4. Let D be an open set in R2 and f : D(⊂ R2) → R be such that fx and
fy both are bounded on D. Then f is continuous.
Proof.
f(x0 + h, y0 + k) − f(x0, y0)
= f(x0 + h, y0 + k) − f(x0, y0 + k) + f(x0, y0 + k) − f(x0, y0)
= hfx(x0 + θ1h, y0 + k) + kfy(x0, y0 + θ2k) (By Mean Value Theorem of one variable).

where θ1, θ2 ∈ (0, 1).
Hence, |f(x0 + h, y0 + k) − f(x0, y0)| ≤ |h|M1 + |k|M2 ≤

√
h2 + k2

√
M2

1 +M2
2 where

|fx(x, y)| ≤ M1, |fy(x, y)| ≤ M2 for all (x, y) ∈ D. Thus, |f(x0 + h, y0 + k) − f(x0, y0)| →
0 as

√
h2 + k2 → 0. Therefore, f is continuous at (x0, y0).

Exercise 2.3.5. Let ∇f = (fx, fy), as along as fx(X0) and fy(X0) just exist, then f need
not be differentiable at X0.
Note: If f is differentiable,

DV f(X0) = f ′(X0) = (fx(X0), fy(X0)) = ∇f(X0)

Example 2.3.6.

f(x, y) =


y
|y|

√
x2 + y2 if y ̸= 0

0 otherwise
Then f is continuous at (0, 0) and Dvf(0, 0) = v2

|v2| = 2 or 0 if v2 = 0. But f is not
differentiable at (0, 0).

ϵ(h, k) =
k

|k|

√
h2 + k2 − k

√
h2 + k2

= k

|k|
− k√

h2 + k2

For h = mk,m, k > 0,

ϵ(mk, k) = 1 − 1√
1 +m2

̸→ 0 as k → 0
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Exercise 2.3.7. Prove that

f(x, y) =


(x2 + y2) sin 1

x2+y2 if x2 + y2 ̸= 0

0 otherwise

is differentiable at (0, 0) and f ′(0, 0) = (0, 0). But none of fx and fy is continuous at
(0, 0).

Theorem 2.3.8. Let D be an open set in R2. Suppose fx and fy are continuous in a
neighbourhood of (x0, y0) ∈ D. Then f is differentiable at (x0, y0).

Proof. Since (x0, y0) ∈ D and D is open, ∃ δ > 0 such that Bδ(x0, y0) ⊂ D. Let (x0 +
h, y0 + k) ∈ Bδ(x0, y0). Then consider

ϵ(h, k) = f(x0 + h, y0 + k) − f(x0, y0) − hfx(x0, y0) − kfy(x0, y0)√
h2 + k2

Since fx and fy exist inBδ(x0, y0) (say), one can apply the Mean Value Theorem coordinate-
wise. Thus,

ϵ(h, k) = hfx(x0 + θ1h, y0 + k) + kfy(x0, y0 + θ2k) − hfx(x0, y0) − kfy(x0, y0)√
h2 + k2

where 0 < θ1, θ2 < 1.

|ϵ(h, k)| <
√
h2 + k2

(
(fx(x0 + θ1h, y0 + k) − fx(x0, y0))2 + (fy(x0, y0 + θ2k) − fy(x0, y0))2

)
Since fx and fy are continuous in Bδ(x0, y0), |ϵ(h, k)| → 0 as

√
h2 + k2 → 0. Thus f is

differentiable at (x0, y0).

Geometric Interpretation of Derivative:
For function from Rn → R. Let y = f(x0) + f ′(x0)(x − x0) For n = 1, y = f(x0) +

f ′(x0)(x−x0) (line passing through (x0, f(x0))). For n = 2, z = f(x0, y0) + fx(x0, y0)(x−
x0) + fy(x0, y0)(y − y0) (a plane passing through (x0, y0, f(x0, y0))).

2.3.4 Chain rule
I ⊂ R g−→ J

f−→ R.

Let F = f ◦ g. If f and g are both differentiable, then f ◦ g is differentiable.

Proof. Since f is differentiable at y = g(x),

f(y + k) − f(y) − f ′(y)k = kη(k) (1)
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when η(k) → 0 as k → 0. Since g is differentiable at x, g is continuous. Set k =
g(x+ h) − g(x), then h → 0 implies k → 0. Since g is differentiable,

k = g(x+ h) − g(x) = hg′(x) + hµ(h),

where µ(h) → 0 as h → 0.
Consider

ϵ(h) = f ◦ g(x+ h) − f ◦ g(x) − f ′(g(x))g′(x)h
h

= f(y + k) − f(y) − f ′(y)(k − hµ(h))
h

Since 1
h

= g′(x)+µ(h)
k

,
ϵ(h) = η(k)(g′(x) + µ(h)) + f ′(y)µ(h)

Since h → 0 implies k → 0 implies η(k) → 0. So ϵ(h) → 0. Thus f ◦ g is differentiable
and

(f ◦ g)′(x) = f ′(g(x))g′(x)

Chain Rule for R2 → R : If f and g both are differentiable, then f ◦ g is differentiable
and

(f ◦ g)′(x) = f ′(g(x))g′(x)

Proof.
η(k) = f(y + k) − f(y) − f ′(y)k

∥k∥
→ 0

where ∥k∥ → 0. Since g is continuous, set K = g(x+h) − g(x), then ∥k∥ → 0 as |h| → 0.
Since g is differentiable at x,

k = g(x+ h) − g(x) = hg′(x) + |h|µ(h)

that is,
∥k∥ ≤ |h|∥g′(x)∥ + |h|∥µ(h)∥

Now,
ϵ(h) = f ◦ g(x+ h) − f ◦ g(x) − f ′(g(x))g′(x)h

|h|
|ϵ(h)| ≤ |η(k)|(∥g′(x)∥ + ∥µ(h)∥) + ∥f ′(y)∥∥µ(h)∥

→ 0 as h → 0, because h → 0 implies k → 0
Thus,

(f ◦ g)′(x) = f ′(g(x))︸ ︷︷ ︸
1×2

g′(x)︸ ︷︷ ︸
2×1
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Mean Value Theorem for Convex Domain:
Let D be an open and convex set in R2. Suppose f : D → R is differentiable. Then

for any x, y ∈ D, there exists c ∈ D such that f(x) − f(y) = (x − y) · f ′(c) where
c ∈ (x, y) = {λx+ (1 − λ)y : 0 < λ < 1}.

Proof. Consider
φ(t) = f((1 − t)x+ ty)

By the chain rule, φ is differentiable on (0, 1) and

φ′(t) = f ′((1 − t)x+ ty) · (y − x)

By the Mean Value Theorem for one variable,

φ(1) − φ(0) = φ′(λ)(1 − 0)

that is,
f(y) − f(x) = f ′((1 − λ)x+ λy))(y − x)

Function from Rn to Rm: Let D be an open set in Rn and f : D(⊂ Rn) → Rm be
differentiable. Then

f ′(x0) =
(
∂fi(x0)
∂xj

)
m×n

Proof. We know that f : D ⊂ Rn → Rm is differentiable at x0 if there exists a Am×n

matrix such that

ϵ(h) = f(x0 + h) − f(x0) − Ah

∥h∥
→ 0 as ∥h∥ → 0, (1)

Let {e1, . . . , en} and {u1, . . . , um} be the free standard basis for Rn and Rm respectively.
If f = (f1, . . . , fm), then fi(x) = f(x) · ui. In (1) substitute h = hjej, ∥h∥ = |hj|,

ϵ(hjej) = f(x0 + hjej) − f(x0) − hjf
′(x0)ej

|hj|
→ 0 as hj → 0

if and only if lim
hj→0

f(x0 + hjej) − f(x0)
hj

= f ′(x0)ej

implies
(
∂fi(x0)
∂xj

)
exists and

f ′(x0) =
(
∂fi(x0)
∂xj

)
m×n
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=


∂f1(x0)

∂x1
· · · ∂f1(x0)

∂xn... . . . ...
∂fm(x0)

∂x1
· · · ∂fm(x0)

∂xn


m×n

Write Jf (x0) =
(

∂fi(x0)
∂xj

)
m×n

. Then Jf is called the Jacobian matrix of f .
Note: Existence of ∂fi(x0)

∂xj
does not imply that f ′(x0) exists.

Example 2.3.9. f : R2 → R2

f(x, y) =

(

x2y
x2+y2 ,

xy2

x2+y2

)
if x2 + y2 ̸= 0

(0, 0) otherwise

Then f = (g, h).

Jf (0, 0) =
(
gx gy

hx hy

)
(0, 0) =

(
0 0
0 0

)
But f is not differentiable at (0, 0).

∥ϵ(h, k)∥ =

∥∥∥∥∥( h2k
h2+k2 ,

hk2

h2+k2

)
−
(

0 0
0 0

)(
h
k

)∥∥∥∥∥
√
h2 + k2

∥ϵ(h, k)∥ = |hk|
h2 + k2 ̸→ 0 as

√
h2 + k2 → 0

Therefore, f is not differentiable at (0, 0).

Example 2.3.10. Let f : R2 → R :

f(x, y) = (ex cos y, ex sin y)

det (Jf (x, y)) = e2x ̸= 0 implies Jf (x, y) is non-singular matrix ∀(x, y) ∈ R2, but f is not
one-to-one on R2, since f(x, 2π + y) = f(x, y).

Norm of a matrix (or linear map):
Let A : Rn → Rm be linear. Then A = (R1, R2, . . . , Rm)T , where Ri’s are rows of A.

Let x ∈ Rn. Then
Ax = (R1x,R2x, . . . , Rmx) ∈ Rm

and
∥Ax∥ =

√∑
|Rix|2 ≤

(√∑
∥Ri∥2

)
∥x∥
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If x ̸= 0,
∥Ax∥
∥x∥

≤
√∑

∥Ri∥2

Therefore, {∥Ax∥
∥x∥ : x ̸= 0} is bounded in R. Hence, it has a supremum. Let

∥A∥ := sup
x̸=0

∥Ax∥
∥x∥

< ∞.

Then

(i) ∥Ax∥ ≤ ∥A∥∥x∥, ∀x ∈ Rn.

(ii) ∥A∥ = sup∥x∥=1 ∥Ax∥.

Example 2.3.11. Let A : R2 → R, A(x, y) = 4x+ 3y. Then

∥A∥ = sup
x2+y2=1

|4x+ 3y| = sup
−1≤x≤1

|4x+ 3
√

1 − x2|

Example 2.3.12. Let A : R2 → R2, A(x, y) = (3x, 4y). Then

∥A∥ = sup
x2+y2=1

∥(3x, 4y)∥ = sup
x2+y2=1

√
9x2 + 16y2 = sup

0≤x≤1

√
9x2 + 16(1 − x2)

Chain rule for functions from Rn → Rm:
Let D be an open set in Rn and f : D ⊂ Rn → Rm be differentiable and g : f(D) → Rl

be differentiable. Then g ◦ f : D → Rl is differentiable and

(g ◦ f)′(x) = g′(f(x))f ′(x)

(where g′(f(x)) is an l ×m matrix and f ′(x) is an m× n matrix).

Proof.

η(k) =
g
(
y + k

)
− g

(
y
)

− g′(y)k
∥k∥

→ 0 as ∥k∥ → 0

Since y = f(x) and f is continuous at x, set k = f(x+h) − f(x). Then ∥h∥ → 0 implies
∥k∥ → 0. Also,

∥k∥ = ∥f(x+ h) − f(x)∥ = ∥f ′(x)h+ ∥h∥ϵ(h)∥
(since f is differentiable at x )

≤ ∥f ′(x)∥∥h∥ + ∥h∥∥ϵ(h)∥

that is,
1

∥h∥
≤ 1

∥k∥
{∥f ′(x)∥ + ∥ϵ(h)∥}
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Now,

µ(h) = g ◦ f(x+ h) − g ◦ f(x) − g′(f(x))f ′(x)h
∥h∥

= g(y + k) − g(y) − g′(y)(k − ∥h∥ϵ(h))
∥h∥

= ∥k∥η(h) − ∥h∥g′(y)ϵ(h)
∥h∥

∥µ(h)∥ ≤ ∥η(h)∥{∥f ′(x)∥ + ∥ϵ(h)∥} + ∥g′(y)∥∥ϵ(h)∥ → 0
as ∥h∥ → 0. Hence, (g ◦ f)′(x) exists and (g ◦ f)′(x) = g′(f(x)) f ′(x).

Example 2.3.13. Let f : R → R be differentiable and F : Rn → R be defined by
F (x) = f(∥x∥2). Then F is differentiable and F ′(x) = 2f ′(∥x∥2)x.
Let g(x) = ∥x∥2 = x2

1 + · · · + x2
n. g′(x) = (2x1, 2x2, . . . , 2xn) Thus,

F (x) = (f ◦ g)(x)

By the chain rule, since F is differentiable and

F ′(x) = f ′(g(x)) g′(x)

that is,
F ′(x) = 2f ′(∥x∥2)x

Exercise 2.3.14. Let F (x) = f
(
∥x∥2k

)
. Prove that F ′(x) = 2k∥x∥2k−2f ′

(
∥x∥2k

)
x.

Euler’s Formula. Let f : Rn → Rm be differentiable and f(rx) = rαf(x), ∀r > 0 and
some α ∈ R. Then f ′(x)x = αf(x).

Proof. Since f(rx) = rαf(x), ∀r > 0, differentiate both sides with respect to r.

f ′(rx) d
dr

(rx) = αrα−1f(x)

f ′(rx)x = αrα−1f(x)
Putting r = 1,

implies f ′(x)x = αf(x)
For n = 2,

x
∂f

∂x
+ y

∂f

∂y
= αf(x, y)

Example 2.3.15. If α > 0, f is continuous at 0. If α > 1, f is differentiable at 0.
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Proof. (i) If α > 0, f(0 + h) − f(0) = f(h). Take h = ∥h∥v, with ∥v∥ = 1

∥f(0 + h) − f(0)∥ = ∥h∥α∥f(v)∥ → 0 as ∥h∥ → 0

(ii) If α > 1,
∂f

∂xj

(0) = lim
h→0

f(0 + hjej) − f(0)
hj

= lim
h→0

|hj|αf(ej)
hj

→ 0 as hj → 0 (sinceα > 1)

implies Jf (0) = 0 (m× n matrix)

ϵ(h) = f(0 + h) − f(0) − Jf (0)h
∥h∥

= ∥h∥αf(v)
∥h∥

, ∥v∥ = 1, h = ∥h∥v

→ 0 as ∥h∥ → 0

Mixed Derivatives: Let D ⊂ Rn (or R2) be an open set.

fxx = (fx)x = ∂

∂x

(
∂f

∂x

)
= ∂2f

∂x2

fxy = ∂

∂y
(fx) = ∂2f

∂y∂x

Example 2.3.16.

f(x, y) =
xy

x2−y2

x2+y2 , x2 + y2 ̸= 0
0, x2 + y2 = 0

fyx(0, 0) = ∂fy

∂x
(0, 0) = lim

h→0

fy(h, 0) − fy(0, 0)
h

But
fy(h, 0) = lim

k→0

f(h, k) − f(h, 0)
k

= h

So,
fyx(0, 0) = lim

h→0

h− 0
h

= 1

Similarly, fx(0, 0) = −1 ̸= fyx(0, 0).
Notations: C1(D) — set of all continuously differentiable functions on D whose derivative
is continuous (that is, fx and fy both are continuous).

C2(D) – set of all functions on D whose partial derivatives up to second order are continuous.
(that is, fx, fy, fxy,fyx, fxx, fyy are continuous.)
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Theorem 2.3.17. If D is open and f ∈ C2(D), then fxy(x0, y0) = fyx(x0, y0).

Proof. Since D is open and (x0, y0) ∈ D, there exists an open ball Bδ(x0, y0) ⊂ D or one
can draw a rectangle. Let

F (x, y) = f(x, y) − f(x0, y) + f(x0, y0) − f(x, y0) (1)

Again, let A(x, y) = f(x, y) − f(x0, y). From (1), we get F (x, y) = A(x, y) − A(x, y0) By
the mean value theorem,

F (x, y) = ∂A

∂y
(x, η)(y−y0) = (∂f

∂y
(x, η)−∂f

∂y
(x0, η))(y−y0) where η = y0+(y−y0)θ1, 0 < θ1 < 1

F (x, y) = ∂2f

∂x∂y
(ξ, η)(x− x0)(y − y0)

where ξ = x0 + (x− x0)θ2, 0 < θ2 < 1.

F (x, y)
(x− x0)(y − y0)

= ∂2f

∂x∂y
(ξ, η)

Since (x, y) → (x0, y0) implies (ξ, η) → (x0, y0) and ∂2f
∂x∂y

is continuous at (x0, y0),

lim
(x,y)→(x0,y0)

F (x, y)
(x− x0)(y − y0)

= ∂2f

∂x∂y
(x0, y0) (2)

Similarly, let B(x, y) = f(x, y) − f(x, y0). Then F (x, y) = B(x, y) − B(x0, y). It is
straightforward to verify that

lim
(x,y)→(x0,y0)

F (x, y)
(x− x0)(y − y0)

= ∂2f

∂y∂x
(x0, y0) (3)

Thus from (2) and (3),
∂2f

∂x∂y
(x0, y0) = ∂2f

∂y∂x
(x0, y0)

Note that if f ∈ C2(D),D ⊂ Rn, then

∂2f

∂xj∂xk

= ∂2f

∂xk∂xj

, ∀j, k = 1, 2, . . . , n
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2.3.5 Taylor’s theorem
Theorem 2.3.18 (Taylor’s Theorem). Let D be an open set in R2 and f ∈ C2(D). Then
there exist λ ∈ (0, 1) such that

f(X +H) = f(X) + f ′(X)H +H tf ′′(C)H,

where C = X + λH and ∥H∥ < δ.

Proof. Let g(t) = f(X + tH), so g(t) = f ◦ φ(t) where φ(t) = X + tH.

g′(t) = f ′(φ(t))φ′(t) = f ′(φ(t))H

= hfx(φ(t)) + kfy(φ(t))

g′′(t) = h(fx)′(φ(t))φ′(t) + k(fy)′(φ(t))φ′(t)

= h(fxx(φ(t))fxy(φ(t)))H + k(fyx(φ(t))fyy(φ(t)))H

= H t

(
fxx(φ(t)) fxy(φ(t))
fyx(φ(t)) fyy(φ(t))

)
H where H t = (h k) (row vector)

Since g(0) = f(X), g(1) = f(X +H), the Mean Value Theorem for one variable gives:

g(1) = g(0) + g′(0) · 1 + 1
2g

′′(λ).12

So,
f(X +H) = f(X) + f ′(X)H + 1

2H
Tf ′′(C)H

where C = X + λH and ∥H∥ < δ.

Theorem 2.3.19. Let f : [a, b] → Rn be differentiable on (a, b) and continuous on [a, b].
Then there exists λ ∈ (a, b) such that ∥f(b) − f(a)∥ ≤ ∥f ′(λ)∥(b− a)

Proof. Let g(t) = (f(b) − f(a)) · f(a + (b − a)t). Then g′(t) = (f(b) − f(a)) · f ′(a +
(b − a)t)(b − a) (by chain rule). Since g : [a, b] → R is differentiable, by the Mean Value
Theorem, there exists λ ∈ (a, b) such that

g(b) − g(a) = g′(λ)(b− a)

∥f(b) − f(a)∥2 = (f(b) − f(a)) · f ′(λ)(b− a)

≤ ∥f(b) − f(a)∥ · ∥f ′(λ)∥(b− a)

Thus,
∥f(b) − f(a)∥ ≤ ∥f ′(λ)∥(b− a)
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Theorem 2.3.20. Let D be open in Rn and f : D ⊂ Rn → Rm be differentiable at
X ∈ D. Then there exist λ ∈ (0, 1) such that ∥f(X +H) − f(X)∥ ≤ ∥f ′(C)∥ ∥H∥, where
C = X + λH, ∥H∥ < ε (for some λ > 0).
Note: Equality need not hold. For g : (−1, 1) → R2,

g(t) = (t3, 1 − t2)

Suppose
g(1) − g(−1) = g′(λ)(1 − (−1))

(2, 0) = 2(3λ2,−2λ) implies λ = 0,± 1√
3

But x = t3, y = 1 − t2, x2 = (1 − y)3, has no tangent parallel to x-axis.

Proof. Let g(t) = f(X + tH). Then g : [0, 1] → Rm is differentiable. By previous Mean
Value Theorem, ∃ λ ∈ (0, 1) such that

∥g(1) − g(0)∥ ≤ ∥g′(λ)∥(1 − 0)

∥f(X +H) − f(X)∥ ≤ ∥g′(λ)∥ ≤ ∥f ′(c)∥∥H∥, C = X + λH

where g′(λ) = f ′(X + λH)H.

Notations:

(i) Ln(R) = space of all linear maps from Rn to Rn.

(ii) GLn(R) = {A ∈ Ln(R) : AA−1 = I}= set of all invertible matrices.

Proposition 2.3.21. Let A ∈ GLn(R) and B ∈ Ln(R) be such that ∥B − A∥ < 1
∥A−1∥ .

Then
(i) B ∈ GLn(R) (that is, GLn(R) is open in Ln(R)).
(ii) A 7→ A−1 is continuous on GLn(R).

Proof. Let α = 1
∥A−1∥ , β = ∥B − A∥. Then β < α. For x ∈ Rn, write

α∥x∥ = α∥A−1Ax∥ ≤ α∥A−1∥∥Ax∥

that is,
α∥x∥ ≤ ∥Ax∥ = ∥(A−B)x+Bx∥ ≤ ∥A−B∥∥x∥ + ∥Bx∥

implies (α− β)∥x∥ ≤ ∥Bx∥ (1)

(i) If Bx = 0, then (α − β)∥x∥ = 0 implies x = 0. Since B is a one-to-one linear map
from Rn → Rn, so B is onto.
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(ii) Put x = B−1y in (1), then

∥B−1y∥
∥y∥

≤ 1
α− β

, y ̸= 0.

sup
y ̸=0

∥B−1y∥
∥y∥

≤ 1
α− β

implies ∥B−1∥ < 1
α− β

Now,

∥B−1 − A−1∥ = ∥B−1(A−B)A−1∥ ≤ ∥A−B∥ 1
2(α− β) → 0 as A → B

Hence, the map A 7→ A−1 is continuous.

Note: A 7→ A−1 is one-to-one map, because A−1 = B−1 implies A = B.

Example 2.3.22. Let f : R → R be one-to-one and onto, and f is continuously dif-
ferentiable at x0 ∈ R such that f ′(x0) ̸= 0. Then f−1 is differentiable at y0 = f(x0)
and (

f−1
)′

(y0) = 1
f ′(x0)

.

Proof.

ϵ(k) =
f−1(y0 + k) − f−1(y0) − k

f ′(x0)
|k|

Let h = f−1(y0 + k) − f−1(y0), y0 + k = f(x0 +h) and k = f(x0 +h) − f(x0) implies h ·
f ′(x0 + θh) for some θ.

Since f ′(x0) ̸= 0, ∃ δ > 0 such that f ′(x) ̸= 0 for all x ∈ [x0 − δ, x0 + δ]. So
|f ′(x)| > m > 0 for all x ∈ [x0−δ, x0+δ]. Choose h small such that x0+θh ∈ [x0−δ, x0+δ].
|k| > |h|m. Thus k → 0 implies h → 0.

|ϵ(k)| =

∣∣∣h− f(x0+h)−f(x0)
f ′(x0)

∣∣∣
|f(x0 + h) − f(x0)|

= |f ′(x0) − f ′(x0 + θh)|
|f ′(x0 + θh)||f ′(x0)|

→ 0
|f ′(x0)|

= 0 (sincef ′ is continuous at x0)

Note: If f−1 is differentiable, then f−1 ◦ f(x) = x and (f−1)′(f(x0))f ′(x0) = 1.
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2.4 Inverse and implicit function theorems

2.4.1 Inverse function theorem
Theorem 2.4.1 (Inverse Function Theorem). Let Ω be an open set in Rn. Suppose
f : Ω ⊂ Rn → Rn be a C1 map such that det f ′(x0) ̸= 0. Then

(i) ∃ open sets U and V ⊂ Rn such that f : U → V (= f(U)) is bijective.

(ii) f−1 is a C1 map on V , and

(f−1)′(f(x0)) = (f ′(x0))−1.

Proof. Let A = f ′(x0). For y ∈ Rn, define φ : Ω → Rn by

φ(x) = x+ A−1(y − f(x)) (1)

Then φ(x) = x if and only if y = f(x) (that is, x is the fixed point of φ if and only if
y = f(x)). Since f ′ is continuous at x0, for ϵ = 1

2∥A−1∥ > 0, there exists δ > 0 such that

∥x− x0∥ < δ implies ∥f ′(x) − f ′(x0)∥ <
1

2∥A−1∥
.

Let U = Bδ(x0) = {x ∈ Rn : ∥x− x0∥ < δ} and V = f(U).

(i) Claim: f is one-to-one on U .
Now, φ′(x) = I+A−1f ′(x) = A−1(A−f ′(x)). Thus, ∥φ′(x)∥ ≤ ∥A−1∥∥A−f ′(x)∥ <
1
2 .
If x1, x2 ∈ U , by the Mean Value Theorem for φ,

∥φ(x1) − φ(x2)∥ ≤ ∥φ′(x1 + λ(x2 − x1))∥∥x1 − x2∥ <
1
2∥x1 − x2∥.

So, φ is a contraction on U . Hence, φ can have only one fixed point. Hence, y = f(x)
for at most one x ∈ U . Therefore, f is one-to-one on U .

(ii) Claim: V is open.
Let y∗ ∈ V . Then y∗ = f(x∗) for some x∗ ∈ U . Then ∃r > 0 such that Br(x∗) =
{x ∈ U : ∥x− x∗∥ < r} ⊂ U .
Now, it is enough to prove that, whenever

∥y − y∗∥ < r

2∥A−1∥
implies y ∈ V (2)
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Suppose ∥y − y∗∥ < r
2∥A−1∥ . Then

∥φ(x∗) − x∗∥ = ∥A−1(y − y∗)∥

≤ ∥A−1∥∥y − y∗∥ < r

2 .

If x ∈ Br(x∗) = {x ∈ Ω : ∥x− x∗∥ ≤ r}, then

∥φ(x) − x∗∥ ≤ ∥φ(x) − φ(x∗)∥ + ∥φ(x∗) − x∗∥

<
1
2∥x− x∗∥ + r

2 < r.

So x ∈ Br(x∗) implies φ(x) ∈ Br(x∗). φ : Br(x∗) → Br(x∗) is a contraction
mapping. Then φ has a fixed point x ∈ Br(x∗) such that φ(x) = x if and only if
y = f(x). Now y = f(x) ⊂ f(Br(x∗)) ⊂ f(U) = V . Thus, V is open and hence
f : U → V is one-to-one and onto (with V = f(U) open).

(iii) Claim: f−1 : V → U is differentiable at f(x0).
Let y ∈ V , then y + k ∈ V (since V is open) for small ∥k∥.
Let h = f−1(y + k) − f−1(y). Then k = f(x+ h) − f(x) (since f−1(y) = x). Now,

φ(x+ h) − φ(x) = h+ A−1(f(x) − f(x+ h)) = h− A−1k.

implies ∥h− A−1k∥ ≤ 1
2∥h∥

implies ∥h∥ ≤ ∥h− A−1k∥ + ∥A−1k∥

≤ 1
2∥h∥ + ∥Ah∥

that is,
1
2∥h∥ ≤ ∥A−1k∥ (3)

≤ ∥A−1∥∥k∥
Now,

η(k) = f−1(y0 + k) − f−1(y0) − (f−1(x0))−1k

∥k∥

= (f ′(x0))−1(f ′(x0)h− (f(x0 + h) − f(x0)))
∥k∥

∥η(k)∥ ≤ ∥(f ′(x0))−1∥∥f(x0 + h) − f(x0) − f ′(x0)h∥
∥h∥

2∥A−1∥

→ 0 as h → 0 (sincek → 0 implies h → 0)
implies (f−1)′(f(x0)) = (f ′(x0))−1
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(iv) f−1 is continuously differentiable that is, (f−1)′ is continuous. Need to prove
(f−1)′(y0) = (f ′(x0))−1. Since A 7→ A−1 is continuous on GLn(R), (f−1)′ is contin-
uous.

Example 2.4.2. Let f : R2 → R2 be defined by f(x, y) = (x− e−y, y − ex). Then

f ′(0, 0) =
(

1 1
−1 1

)
, det f ′(0, 0) = 2 ̸= 0

Hence f is one-to-one in a neighborhood of (0, 0) and

(f−1)′(f(0, 0)) = (f ′(0, 0))−1 =
(

1 1
−1 1

)−1

2.4.2 Implicit function theorem
Consider f : R2 → R by f(x, y) = x2 + y2 − 1. Then f ′(x, y) = (2x, 2y).

∂f

∂x

∣∣∣∣∣
(1,0)

= 2, ∂f

∂y

∣∣∣∣∣
(1,0)

= 0

Then one can draw a ball centered at (1, 0) such that of radius r < 1 such that f(φ(y), y) =
0, that is,

x = φ(y), |y| < r < 1, φ(y) =
√

1 − y2

However, one cannot draw a ball of any radius around (1, 0) such that f(x, ψ(x)) = 0,
that is, y = ψ(x) for |x| < r, even r very small. Because, for any r > 0, one cannot write
ψ(x) =

√
1 − x2 as x > 1 will be included in any ball around (1, 0).

However, at any point on the circle, other than (±1, 0) and (0,±1). One can solve x
and y simultaneously in a small neighborhood of the point.
Now, consider a linear map

A : Rn × Rm → Rn

Then (h, k) ∈ Rn × Rm, (h, k) = (h, 0) + (0, k).

A(h, k) = A(h, 0) + A(0, k) = Axh+ Ayk (say)

Lemma 2.4.3. If Ax is invertible (Ax ∈ Ln(R)), then for each k ∈ Rm, there exist a
unique h ∈ Rn such that h = −A−1

x Ayk

Proof. A(h, k) = 0 if and only if Axh + Ayk = 0. Since Ax is invertible, h = −A−1
x Ayk.

Now, let Ω ⊂ Rn × Rm be an open set and f : Ω ⊂ Rn × Rm → Rn be differentiable.

f = (f1, . . . , fn)
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fi : Ω ⊂ Rn × Rm → R

f ′
i(x, y) =

(
∂fi

∂x1
(x, y) · · · ∂fi

∂xn

(x, y) · · · ∂fi

∂y1
(x, y) · · · ∂fi

∂ym

(x, y)
)

f ′ =


∂f1
∂x1

· · · ∂f1
∂xn

∂f1
∂y1

· · · ∂f1
∂ym... ... ... ...

∂fn

∂x1
· · · ∂fn

∂xn

∂fn

∂y1
· · · ∂fn

∂ym


n×(n+m)

=
( ∂fi

∂xj

)
x

(
∂fi

∂yk

)
y


n×(n+m)

= (Ax Ay)

Then Ax : Rn → Rn is linear and Ay : Rm → Rn is linear, where Ax =
(

∂fi

∂xj

)
x
, Ay =(

∂fi

∂yk

)
y
.

Theorem 2.4.4. Implicit Function Theorem: Let Ω be an open subset in Rn × Rm.
If f : Ω ⊂ Rn × Rm → Rn be a C1 map, with f(x0, y0) = 0 and det [f ′(x0, y0)]x ̸= 0 for
some (x0, y0) ∈ Ω. Then

(i) There exist open sets U ⊂ Rn × Rm and W ⊂ Rm such that for all y ∈ W there
exist a unique x ∈ Rn with (x, y) ∈ U and f(x, y) = 0.

(ii) If x = g(y), then g : W ⊂ Rn → Rn is C1 map, g(y0) = x0, f(g(y), y) = 0 for all
y ∈ W and g′(y0) = −A−1

x Ay, where Ax = f ′
x, Ay = f ′

y.

that is, f will vanish on a curve x = g(y).

Proof. (i) Let F : Ω → Rn × Rm by F (x, y) = (f(x, y), y). Then F is a C1-map, and

F ′(x0, y0) =
[
{f ′(x0, y0)}x {f ′(x0, y0)}y

0 I

]

detF ′(x0, y0) ̸= 0. Therefore, by the Inverse Mapping Theorem, there exist open
sets U ⊂ Rn × Rm and V ⊂ Rn × Rm such that F : U → V is a one-one onto
C1-map.
Let W = {y ∈ Rm : (0, y) ∈ V }. Then W is open, because V is open. Since F is
onto, for y ∈ W ,

(0, y) = F (x, y) implies (x, y) ∈ U.

implies f(x, y) = 0, ∀y ∈ W.

Suppose, for this y, there exist (x′, y) ∈ U such that f(x′, y) = 0. Then

F (x′, y) = (f(x′, y), y) = (f(x, y), y) = F (x, y).

Since F is one-to-one on U implies x′ = x.
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(ii) Define x = g(y) for y ∈ W . Then

(g(y), y) ∈ U and f(g(y), y) = 0 (*)

implies F (g(y), y) = (0, y) ∀y ∈ W.

that is, F−1(0, y) = (g(y), y).
By the Inverse Mapping Theorem, F−1 is a C1-map, hence g is a C1-map.
To compute g′(y0), consider f(g(y), y) = 0, y ∈ W . Differentiating with respect
to y and using the chain rule, we get

f ′(g(y0), y0)
(
g′(y0)
I

)
= 0

f ′(x0, y0)
(
g′(y0)
I

)
= 0

Let A := f ′(x0, y0), then

(Ax Ay)
(
g′(y0)
I

)
= 0

implies Axg
′(y0) + Ay = 0 implies g′(y0) = −A−1

x Ay

Example 2.4.5. Prove that x2 + yex − sin(xy) = 0 can be solved for y in a neighborhood
of (0, 0), but cannot be solved for x in any neighborhood of (0, 0).

F (x, y) = x2 + yex − sin(xy) (1)

(i) F (0, 0) = 0, ∂F
∂y

|(0,0) = 1 ̸= 0. By the implicit function theorem, there exists a ball
around (0, 0) and an interval for x such that F (x, g(x)) = 0 or y = g(x) for |x| < r.

(ii) ∂F
∂x

|(0,0) = 0. Hence, the implicit function theorem cannot be applied.
On the contrary, suppose x = ϕ(y), then 0 = ϕ(0) and

(ϕ(y))2 + yeϕ(y) − sin(ϕ(y)y) = 0

for |y| < r for some r > 0. Then

2ϕ(0)ϕ′(0) + 1 · eϕ(0) + 0 · eϕ(0)ϕ′(0) − cos(ϕ(0)0) (ϕ′(0)0 + ϕ(0) · 1) = 0

implies 1 = 0 (contradiction)
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Example 2.4.6. Let f : R × R2 → R2

f(x, y, z) = (xey + yez, xez + zey)

Then f is a C1-map.

f ′(x, y, z) =
(
ey xey + ez yez

ez zey xez + ey

)
f(−1, 1, 1) = (0, 0)

Let f = (f1, f2). Then 
∂f1

∂y

∂f1

∂z
∂f2

∂y

∂f2

∂z

 (−1, 1, 1) =
(

0 e
e 0

)

By the implicit function theorem, there exists an open ball U in R3 and open ball V in
R2, such that

(y, z) = (ϕ(x), ψ(x)), |x| < r for some r > 0.

Exercise 2.4.7. Let f : R2 → R be a C1-map such that f(0, o) = 0, fx(0, 0) = 1. Let
F (x, y) = (f(x, y), y). Prove that F is injective in some neighborhood of (0, 0). Does F
remain injective in any neighborhood of (0, 0)?

Remark: Condition in implicit function theorem or inverse mapping theorem on deriva-
tives are sufficient.

Example 2.4.8. f : R2 → R, f(x, y) = x2 − y3.

f(0, 0) = 0,
∂f

∂y
(0, 0) = 0,

but y = x2/3 is a solution of f(x, y) = 0 near (0, 0).

Example 2.4.9. Let f : R2 → R2, f(x, y) = (x3, y3). Then det f ′(0, 0) = 0 but f is
one-to-one, onto.
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Chapter 3

Lebesgue Measure and Integral

This chapter presents the measure-theoretic foundation of modern integration. Mo-
tivated by limitations of the Riemann integral, we build Lebesgue outer measure, de-
duce its main properties, and define Lebesgue measurable sets, including instructive
examples such as the Cantor set and the existence of non-measurable sets. We intro-
duce measurable and simple functions, define the Lebesgue integral, and develop the
main convergence principles—the monotone convergence theorem, Fatou’s lemma,
the dominated convergence theorem, and the bounded convergence theorem—together
with a useful estimate (Chebyshev’s inequality) for controlling the size of level sets.

3.1 Syllabus map
We introduce the measure-theoretic approach to integration: we build Lebesgue measure
from outer measure, define measurable functions, construct the Lebesgue integral, prove
convergence theorems, and introduce the Lp spaces.

3.2 From Riemann to Lebesgue

3.2.1 Limitations of the Riemann integral
Let f : [a, b] → R and f is bounded on [a, b]. Then f ∈ R[a, b] (that is, f is Riemann
integrable) if and only if f is almost continuous. However, there are functions which are
neither almost continuous nor bounded and so forth.

(I) f : [0, 1] → R, f(x) =
1 x ∈ (R \ Q) ∩ [0, 1]

0 x ∈ Q ∩ [0, 1]
Then inf U(P, f) = 1 and supL(P, f) = 0. implies f /∈ R[0, 1].

67
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(II)
∫ 1

0

1√
t
dt, f(t) = 1√

t
is not bounded near “0”. However,

∫ 1

1
n

1√
t
dt = 2(1 − 1√

n
) ≤ 2.

Question is should we write ∫ 1

0

1√
t
dt = sup

n

∫ 1

1
n

1√
t
dt = 2 ?

(III)
∫ ∞

0

1
1 + t2

dt,
∫ n

0

1
1 + t2

dt = tan−1 n ≤ π

2 .
Does it suitable to rewrite∫ ∞

0

1
1 + t2

dt = sup
n

∫ n

0

1
1 + t2

dt = π

2 ?

3.3 Measure and measurability

3.3.1 Sigma-algebras and measures
Definition 3.3.1. Let X be a nonempty set. A collection A ⊂ P(X) is called a σ-algebra
on X if.

(i) X ∈ A;

(ii) if E ∈ A, then Ec ∈ A;

(iii) if (En)n≥1 ⊂ A, then ⋃n≥1 En ∈ A.

The pair (X,A) is called a measurable space. Elements of A are called measurable sets.

Definition 3.3.2. A function µ : A → [0,∞] is a measure if µ(∅) = 0 and µ is countably
additive. The triple (X,A, µ) is called a measure space.

3.3.2 Lebesgue outer measure
For open (closed) interval I = (a, b) assign the length ℓ(I) = b − a. For I = (a,∞) or
(−∞, b), we assign ℓ(I) = ∞. Now, the question is to assign an appropriate length to an
arbitrary subset of R. If O ⊂ R is open, then O = ⋃

n In, In = (an, bn) and In ∩ Im = ∅ if
n ̸= m. In this case, one can consider ℓ(O) = ∑∞

n=1 ℓ(In). However, if A ⊆ R, A ⊆ O ⊂ R.
Hence, A ⊂ ⋃∞

n=1 In. Thus, we have an over-estimate for length of A. that is,

ℓ(A) ≤
∑

ℓ(In), such that A ⊂
∞⋃

n=1
In.
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Therefore, we assign a number to A via

m∗(A) := inf
{∑

ℓ(In) : A ⊂
⋃
n

In

}

where m∗(A) denotes the outer measure of A.
Notice that we do not require disjointness in the cover {In : n ∈ N} of A. Moreover, In

could be any type of interval, for example, (an, bn) or [an, bn) or [an, bn] or (an, bn].
Since ϕ ⊂ (0, ϵ), ∀ϵ > 0. Then m∗(ϕ) ≤ ϵ, ∀ϵ > 0. Hence m∗(ϕ) = 0.
For a ∈ R,

{a} ⊂ (a− ϵ

2 , a+ ϵ

2)

implies m∗({a}) ≤ ϵ, ∀ϵ > 0

implies m∗({a}) = 0.

3.3.3 Basic properties of outer measure
(i) If A ⊂ B, then m∗(A) ≤ m∗(B).

Let B ⊂ ⋃
n In, then A ⊂ ⋃

n In. By definition m∗(A) ≤ ∑
ℓ(In); B ⊂ ⋃

n In.
implies m∗(A) ≤ inf {∑ ℓ(In) : ⋃n In ⊃ B} implies m∗(A) ≤ m∗(B).

(ii) If {An}∞
n=1 is a sequence of subsets in R, then

m∗
(⋃

n

An

)
≤
∑

m∗(An)

By definition of infimum, for ϵ > 0, ∃ a cover {In,k}∞
k=1of An such that∑∞

k=1 ℓ(In,k) < m∗(An) + ϵ
2n (if m∗(An) < ∞).

Thus, {In,k : k = 1, 2, . . . , n = 1, 2, . . .} is a cover of ⋃∞
n=1 An.

Therefore,

m∗
( ∞⋃

n=1
An

)
≤

∞∑
n=1

∞∑
k=1

ℓ(In,k) ≤
∞∑

n=1

(
m∗(An) + ϵ

2n

)
≤

∞∑
n=1

m∗(An) + ϵ, ∀ϵ > 0.

Thus,

m∗
( ∞⋃

n=1
An

)
≤

∞∑
n=1

m∗(An)

Example 3.3.3. If A ⊂ R is countable, then A = {a1, a2, . . .} = ⋃∞
i=1{ai}

m∗(A) ≤
∑

m∗({ai}) = 0 implies m∗(A) = 0.
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Thus m∗(Q) = 0. Alternatively, one can think,

Q ⊂
⋃

n∈Z

(
rn − ϵ

2|n|+1 , rn + ϵ

2|n|+1

)

implies m∗(Q) ≤
∑

ℓ
(
rn − ϵ

2|n|+1 , rn + ϵ

2|n|+1

)
= ϵ

2 , ∀ϵ > 0.

Proposition 3.3.4. If I is any interval with end points a and b. Then m∗(I) = b− a.

Proof. We prove the result for each type of interval. Suppose I = [a, b] and m∗(I) = b−a.
Then for I = (a, b), one can deduce that[

a+ ϵ

2 , b− ϵ

2

]
⊂ (a, b)

therefore m∗
([
a+ ϵ

2 , b− ϵ

2

])
≤ m∗{(a, b)}

that is,
b− a ≤ m∗{(a, b)}

Now, (a, b) is a cover of itself, so

m∗{(a, b)} ≤ ℓ{(a, b)} = b− a

Other covering can be done in similar way. Now, consider the case of proving m∗([a, b]) =
b− a.

[a, b] ⊂
(
a− 1

n
, b+ 1

n

)
, ∀n ≥ 1

m∗([a, b]) ≤ b− a+ 2
n

→ b− a

On the other hand, suppose [a, b] ⊂ ⋃∞
n=1 In. Then [a, b] ⊂ ⋃k

n=1 In (Exercise)
(Hint: use Bolzano–Weierstrass theorem.)

implies (a, b) ⊂
k⋃

n=1
In

By induction,

b− a ≤
k∑

n=1
ℓ(In).

(
if [a, b] ⊂ ⋃k

n=1 In ⊔ Ik+1. Then (a, b) ⊂ ⋃k
n=1 In or (a, b) ⊂ Ik+1. Thus

b− a ≤
k+1∑
n=1

ℓ(In).
)
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implies b− a ≤
∞∑

n=1
ℓ(In) for {In}∞

n=1 that cover [a, b].

Hence,
b− a ≤ m∗([a, b]) ≤ b− a.

Example 3.3.5. Let A ⊂ R and x ∈ R. Then for A+ x = {a+ x : a ∈ A}, we have

m∗(A+ x) = m∗(A).

Let A ⊂ ⋃
n In. Then A + x ⊂ ⋃

n(In + x) that is, {In + x}∞
n=1 is a covering of A + x.

Hence
m∗(A+ x) ≤

∑
ℓ(In + x) =

∑
ℓ(In)

for all cover {In} of A. Therefore, m∗(A+x) ≤ m∗(A). By replacing x → −x, m∗(A−x) ≤
m∗(A). Replacing A by A+ x, m∗(A) ≤ m∗(A+ x). Thus, m∗(A+ x) = m∗(A), that is,
m∗ is translation invariant.

Proposition 3.3.6. Let A ⊂ R and ϵ > 0. Then ∃ an open set O ⊃ A such that
m∗(O) < m∗(A) + ϵ that is, m∗(A) = inf{m∗(O) : O ⊃ A,O open}

Proof. By definition, for ϵ > 0, ∃{In} that cover A such that∑
ℓ(In) < m∗(A) + ϵ (if m∗(A) < ∞.)

But m∗ (⋃ In) ≤ ∑
ℓ(In) < m∗(A) + ϵ. Let O = ⋃

In. Then m∗(O) < m∗(A) + ϵ.

Theorem 3.3.7. If A ⊂ R, then ∃ a Gδ-set G ⊂ R such that m∗(A) = m∗(G).

Proof. By the previous result for ϵ = 1
n
, ∃ an open set On ⊃ A such that

m∗(On) < m∗(A) + 1
n

Let G = ⋂
On (a Gδ-set in R). Then A ⊂ G ⊂ On. Thus

m∗(A) ≤ m∗(G) ≤ m∗(On) < m∗(A) + 1
n

So m∗(A) ≤ m∗(G) ≤ m∗(A) + 1
n
, ∀n ≥ 1 implies m∗(A) = m∗(G)

Example 3.3.8. Let E = ⋃
En, En ⊂ R. Then m∗(E) = 0 if and only if m∗(En) = 0 for

all n ∈ N.
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Solution: m∗(E) ≤ ∑
m∗(En) If each of m∗(En) = 0 implies m∗(E) = 0.

Conversely, suppose m∗(E) = 0 and m∗(En0) > 0 for some n0 ∈ N. Then for ϵ =
1
2m

∗(En0) > 0, ∃ a cover {Ik} of E such that

∑
ℓ(Ik) < m∗(E) + 1

2m
∗(En0)

But En0 ⊂ E ⊂ ⋃
Ik implies m∗(En0) < ∑

ℓ(Ik), that is,

m∗(En0) < 1
2m

∗(En0)

which is a contradiction.

Example 3.3.9. Let O = ⋃
In, In open intervals. Then m∗(O) = ∑

ℓ(In).
For ϵ > 0, ∃ a cover {Jk} of O such that∑

ℓ(Ik) < m∗(O) + ϵ (1)

Now, ⋃ In = O ⊂ ⋃
Jk. Since In’s are disjoint, each In ⊂ Jk,n,

ℓ(In) ≤ ℓ(Jk,n)

implies
∞∑

n=1
ℓ(In) <

∞∑
n=1

ℓ(Jk,n) <
∞∑

n=1
ℓ(Jk) < m∗(O) + ε

implies
∞∑

n=1
ℓ(In) < m∗(O) + ε, ∀ ε > 0

implies
∞∑

n=1
ℓ(In) ≤ m∗(O) ≤

∞∑
n=1

ℓ(In)

So, m∗
( ∞⋃

n=1
In

)
=

∞∑
n=1

ℓ(In) =
∞∑

n=1
m∗(In).

Corollary 3.3.10. If {Oi}∞
i=1 is a family of disjoint open sets in R, then

m∗
( ∞⋃

i=1
Oi

)
=

∞∑
i=1

m∗(Oi).

m∗
( ∞⋃

i=1
Oi

)
= m∗

( ∞⋃
i=1

∞⋃
n=1

Ii,n

)
=

∞∑
i=1

∞∑
n=1

ℓ(Ii,n).

So, m∗
( ∞⋃

i=1
Oi

)
=

∞∑
i=1

m∗(Oi).
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Question 3.3.11. What are all those sets for which m∗ is countably additive, that is,

m∗
( ∞⋃

n=1
En

)
=

∞∑
n=1

m∗(En)?

Example 3.3.12. Suppose G is an open and bounded set in R. Then for ∀ε > 0, there
exists a compact set K ⊂ G such that m∗(K) > m∗(G) − ε.
Since G is bounded, G ⊂ [α, β] implies m∗(G) ≤ β−α < ∞. Further, G is open, therefore

G =
⋃
In implies m∗(G) =

∑
ℓ(In) < ∞

So for ε > 0, there exists N ∈ N such that
∞∑

n=N+1
ℓ(In) < ε

2 (1)

Let

K =
N⋃

n=1

[
an + ε

4N , bn − ε

4N

]
, In = (qn, bn)

Then

m∗(K) =
N∑

n=1
m∗

[
an + ε

4N , bn − ε

4N

]

=
N∑

n=1

(
ℓ(In) − ε

2N

)
=

N∑
n=1

ℓ(In) − ε

2

Therefore,

m∗(K) =
N∑

n=1
ℓ(In) + ε

2 − ε

>
N∑

n=1
ℓ(In) +

∞∑
n=N+1

ℓ(In) − ε

= m∗(G) − ε

Proposition 3.3.13. If [a, b] ∩ [c, d] = ∅ then

m∗([a, b] ∪ [c, d]) = m∗([a, b]) +m∗([c, d]).

Proof. Since [a, b] ∩ [c, d] = ∅. Then [a, b] and [c, d] will be separated by some distance
ε > 0. (Why?)
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Suppose [a, b] ∪ [c, d] ⊂ ⋃
In. Then

[a, b] ⊂
⋃

(In ∩ (a− ε, b+ ε)) =
⋃
I ′

n (Say)
[c, d] ⊂

⋃
(In ∩ (c− ε, d+ ε)) =

⋃
I ′′

n (Say)

Then I ′
n ∩ I ′′

l = ∅, for all n,m ≥ 1.

implies m∗([a, b]) +m∗([c, d]) ≤
∑

ℓ(I ′
n) +

∑
ℓ(I ′′

n)

=
∑

ℓ(In ⊔ I ′′
n) =

∑
ℓ{In ∩ ((a− ε, b+ ε) ∪ (c− ε, d+ ε))}

m∗([a, b]) +m∗([c, d]) <
∞∑

n=1
ℓ(In)

m∗([a, b]) +m∗([c, d]) ≤ m∗([a, b] ∪ [c, d])

Since m∗ is countably subadditive, other inequality holds.

Observation: If G is an open and bounded subset of R, then for each ε > 0, there is an
open set O and a compact set K such that K ⊂ G ⊂ O and m∗(O) −m∗(K) < ε.
In general, we fail to write

m∗(B \ A) = m∗(B) −m∗(A)

for A ⊆ B (we shall see example later).

3.3.4 Lebesgue measurable sets
A set E ⊂ R is said to be Lebesgue measurable, if ∀ε > 0, there exists open set O and
closed set F such that

F ⊂ E ⊂ O and m∗(O \ F ) < ε

Note: m∗(O \ E) ≤ m∗(O \ F ) < ε and m∗(F \ E) ≤ m∗(O \ E) < ε.
Thus, one can interpretate that Lebesgue measurable sets are approximately open and
closed.

Proposition 3.3.14. Let M denote the class of all Lebesgue measurable subsets of R.
Then

(i) If E ∈ M, then Ec ∈ M. Oc ⊂ Ec ⊂ F c and m∗(F c \Oc) < ε.

(ii) If m∗(E) = 0. Then E ∈ M.
For ε > 0, there exist O ⊃ E such that m∗(O) < 0 + ε. Let F be any closed set in
E. Then m∗(F ) ≤ m∗(E) = 0.
therefore m∗(O \ F ) ≤ m∗(O) < ε. Thus, E ∈ M.
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(iii) If {En}∞
n=1 ⊂ M, then E = ⋃∞

n=1 En ∈ M.
Write E ′

n = En \ ⋃n−1
i=1 Ei, then ⋃

E ′
n = ⋃

En, where E ′
n are pairwise disjoint sets

(that is, E ′
n ∩E ′

m = ∅ for n ̸= m). Thus, without loss of generality, one can assume
E = ⋃∞

n=1 En, En ∩ Em = ∅ if n ̸= m.
Suppose m∗(E) < ∞, then m∗ (En) ≤ m∗(E) < ∞.
For ε > 0, ∃ Fn ⊂ En ⊂ On such that m∗(On \ Fn) < ε

2n . Now,

k∑
n=1

m∗(On) ≤
k∑

n=1
m∗(On \ Fn) +

k∑
n=1

m∗(Fn)

<
k∑

n=1

ε

2n
+m∗

(
k⋃

n=1
Fn

)
[ since Fn is closed and bounded]

< ε+m∗(E) < ∞, ∀k ≥ 1.

that is, ∑∞
n=1 m

∗(On) < ∞. For ε > 0, ∃ n0 ∈ N such that ∑∞
n=n0+1 m

∗(On) < ε,.
Let O = ⋃∞

n=1 On and F = ⋃n0
n=1 Fn. Then,

m∗(O \ F ) = m∗

( n0⋃
n=1

On

)⋃ ∞⋃
n=n0+1

On

 \
(

n0⋃
n=1

Fn

)
≤ m∗

(
n0⋃

n=1
(On \ Fn)

)
+m∗

 ∞⋃
n=n0+1

On

 (sinceA ∪B \ C = (A \ C) ∪ (B \ C))

≤
n0∑

n=1
m∗(On \ Fn) +

∞∑
n=n0+1

m∗(On) (Fn ⊂ En ⊂ On)

<
n0∑

n=1

ε

2n
+ ε

< 2ε.

that is, F ⊂ E ⊂ O and ∀ε > 0, m∗(O \ F ) < 2ε implies E ∈ M.
If m∗(E) = ∞, write E = ⋃

k∈ZE ∩ [k, k+ 1) = ⋃
k∈ZAk and can be done in similar

way.

(iv) If E1, E2 ∈ M, then E1 ∪E2 = E1 ⊔ (E2 \E1). But for ε > 0, ∃ Oi ⊃ Ei ⊃ Fi such
that m∗(Oi \ Fi) < ε

2 ; i = 1, 2.
For O = O1 ∪O2, F = F1 ∪ F2,

O \ F =
2⋃

i=1
(Oi \ Fi) implies m∗(O \ F ) < ε.



76 CHAPTER 3. LEBESGUE MEASURE AND INTEGRAL

(E1 ∩ E2)c = Ec
1 ∪ Ec

2 ∈ M, since E ∈ M

implies m∗(O \ F ) < ε, Oc ⊆ Ec ⊆ F c

m∗(F c \Oc) = m∗(F c ∩O) < ε

Thus, M is closed under countable union/intersection and complement.

Note: such family of sets is called a σ-algebra.

Definition 3.3.15. If J ⊂ P(R) such that

(i) A ∈ J implies Ac ∈ J .

(ii) Ai ∈ J implies ⋃∞
i=1 Ai ∈ J , then J is called a σ-algebra of sets.

B(R) = σ({(a, b) : a, b ∈ R, a < b < ∞}) (Borel σ-algebra)

is the σ-algebra generated by countable union and complement of sets of type (a, b) and
a, b < ∞.

Proposition 3.3.16. Let a, b ∈ R and a < b, b− a < ∞. Then I = (a, b) ∈ M.

Proof. For ε > 0, [a+ ε, b− ε] ⊂ (a, b) and

m∗{(a, b) \ [a+ ε, b− ε]} = m∗{(a, a+ ε) ⊔ (b− ε, b)} (for small ε > 0)

≤ m∗{(a, a+ ε)} +m∗{(b− ε, b)}
= 2ε

Since I is open, it follows that (a, b) ∈ M. Now [a, b) = {a} ∪ (a, b) and m∗({a}) = 0
implies {a} ∈ M and (a, b) ∈ M. implies [a, b) and [a, b] ∈ M

Thus, any open set O = ⋃
n In ∈ M. Since M is closed under complement, any closed set

F ∈ M.

Example 3.3.17. If A,B ⊂ R such that m∗(A) = 0. Then m∗(A ∪B) = m∗(B).

since m∗(A ∪B) ≤ m∗(A) +m∗(B) = m∗(B) ≤ m∗(A ∪B)
.

Proposition 3.3.18. Let x ∈ R and E ∈ M. Then x+ E ∈ M.

Proof. For ε > 0, there exist F ⊂ E ⊂ O, O open, F closed such that m∗(O \ F ) < ε.
But F + x is closed and O + x = ⋃(In + x) is open with F + x ⊂ E + x ⊂ O + x.
Now, m∗ (O + x \ (F + x)) = m∗(O \ F ) < ε.

Example 3.3.19. Verify that.
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(i) (F + x)c = F c + x.

(ii) (O + x) ∩ (F + x)c = O ∩ F c + x.

(Hint: z /∈ F + x implies z − x /∈ F implies z − x ∈ F c implies z ∈ F c and so forth).

Theorem 3.3.20. If E = ⋃∞
n=1 En, En ∈ M. Then

m∗
( ∞⋃

n=1
En

)
=

∞∑
n=1

m∗(En)

(i) Suppose E is bounded, then m∗(E) < ∞ implies m∗(En) < ∞.
For ε > 0, ∃Fn ⊂ En ⊂ On such that m∗(On \ Fn) < ε

2n .
Now,

k∑
n=1

m∗(En) ≤
k∑

n=1
(m∗(Fn) +m∗(On \ Fn))

<
k∑

n=1
m∗(Fn) +

k∑
n=1

ε

2n
<

k∑
n=1

m∗(Fn) + ε

(sinceEn = (En \ Fn) ∪ Fn ⊆ (On \ Fn) ∪ Fn)
Since Fn’s are compact (closed and bounded).

k∑
n=1

m∗(En) <
k∑

n=1
m∗(Fn) + ε =

(
k⋃

n=1
Fn

)
+ ε

that is
k∑

n=1
m∗(En) < m∗(E) + ε, ∀k ≥ 1.

implies
k∑

n=1
m∗(En) ≤ m∗(E) ≤

k∑
n=1

m∗(En).

Now, suppose E is not bounded. Then, as

R =
∞⋃

k=1
(k, k + 1],

let
Ak = E ∩ (k, k + 1], En,k = En ∩ (k, k + 1].

Then
E =

⋃
k∈Z

Ak, En =
⋃

k∈Z
En,k.

Now,
∞∑

n=1
m∗(En) ≤

∞∑
n=1

∑
k∈Z

m∗(En,k) (1)
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Since Ak = ⋃∞
n=1 En,k, Ak is bounded.

m∗(Ak) =
∞∑

n=1
m∗(En,k) (2)

therefore
∞∑

n=1
m∗(En) ≤

∞∑
k=−∞

m∗(Ak) (3)

Now,
l∑

k=−l

m∗(Ak) = m∗

 l⋃
k=−l

Ak

 ≤ m∗(E), ∀l ≥ 1

If m∗(E) = ∞, okay, identity holds trivially. As

m∗(E) ≤
∞∑

n=1
m∗(En), let m∗(E) < ∞,

implies
∞∑

k=−∞
m∗(Ak) ≤ m∗(E) (4)

implies
∞∑

n=1
m∗(En) ≤ m∗(E) ≤

∞∑
n=1

m∗(En).

3.3.5 The Cantor set
The Cantor set is an uncountable set in [0, 1] having zero length with many peculiar
properties, answering some of the difficult questions related to topology of real line.
Let C0 = [0, 1].

0
1
3

2
3 1.

Delete middle one-third open interval J1 =
(

1
3 ,

2
3

)
from C0. Then

C1 = [0, 1
3] ∪ [23 , 1]

0
1
3

2
3 1.

Delete one-third open interval from each section of C1, and let

J2 =
(1

9 ,
2
9

)
∪
(7

9 ,
8
9

)
Then,

C2 = [0, 1
9] ∪ [29 ,

1
3] ∪ [23 ,

7
9] ∪ [89 , 1]

Thus,
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• C0 = [0, 1], one closed interval of length 1.

• C1 = [0, 1
3 ] ∪ [2

3 , 1], two closed disjoint intervals each of length 1
3 .

• C2 = [0, 1
9 ] ∪ [2

9 ,
1
3 ] ∪ [2

3 ,
7
9 ] ∪ [8

9 , 1], four closed disjoint intervals each of length 1
9 .

By induction, one can construct Cn with 2n disjoint closed intervals each of length 3−n.

(i) Cn is a decreasing sequence of closed and bounded sets, thus Cn ∈ M.

(ii) Let C = ⋂∞
n=1 Cn, then C contains all the end-points of the intervals.

(iii) C = [0, 1] \
{(

1
3 ,

2
3

)
∪
(

1
9 ,

2
9

)
∪
(

7
9 ,

8
9

)
∪ . . .

}
.

(iv) Since C ⊂ Cn, ∀n ≥ 0,

m∗(C) ≤ m∗(Cn) = 2n · 1
3n

→ 0.

Thus, m∗(C) = 0.

(v) C is nowhere dense in [0, 1], that is (C)o = (Co) = ∅.
If not so, then Co ̸= ∅ and x ∈ Co. But Co is open, there exist (y, z) ⊂ Co ⊂ C,
y < z. Thus, m∗{(y, z)} ≤ m∗(C) = 0, contradiction.

(vi) Cantor set is uncountable:
Consider the endpoint 1

3 ∈ C. One can write

1
3 = 0

3 + 2
32 + 2

33 + . . .∞ = (0.222 . . .)3

end point x = 2
3 = (0.2)3. Similarly, we shall prove that each endpoint can be

written as
x = a1

3 + a2

32 + · · · ∞, ai ∈ {0, 2}.

For this, consider the set

F =
{
x ∈ [0, 1] : x =

∞∑
i=1

ai

3i
, ai ∈ {0, 1, 2}

}
\ {end points}

For x ∈ F , we have
x = a1

3 + a2

32 + · · ·

Notice that a1 = 1 if and only if x ∈
(

1
3 ,

2
3

)
if and only if x /∈ C.

a1 ̸= 1, a2 = 1 if and only if x ∈
(

1
9 ,

2
9

)
⊔
(

7
9 ,

8
9

)
if and only if x /∈ C.
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Thus, if ai = 1 for some i, if and only if x /∈ C.
implies C = {x ∈ [0, 1] : x = ∑∞

i=1
ai

3i , ai ∈ {0, 2}}.
Define f : C → [0, 1] by

f(x) = f

( ∞∑
i=1

ai

3i

)
=

∞∑
i=1

ai

2 2−i

Then ai

2 ∈ {0, 1}. Thus f(x) ∈ [0, 1].

f is not one-one:

f
(1

3

)
= f ((0.022 . . .)3) = (0.011 . . .)2 = (0.1)2 = 1

2

and
f
(2

3

)
= f ((0.2)3) = (0.1)2 = 1

2

implies f
(1

3

)
= f

(2
3

)
Exercise 3.3.21. Prove that f(x) = f(y) if and only if x, y are end points of one of the
deleted open interval.

f is an onto map: Here f : C → [0, 1] and let y ∈ [0, 1] such that

f(x) = y =
∞∑

i=1
ai

1
2i

Let
x =

∑ 2ai

3i

then f(x) = y holds. Thus, f is onto. Therefore, C is an uncountable set, having outer
measure zero.

3.3.6 Nonmeasurable sets
For x, y ∈ R, define x ∼ y if and only if x− y ∈ Q. Then ∼ is an equivalence relation on
R. Hence, it partitions R into disjoint equivalence classes.
Let x+ Q = {x+ r : r ∈ Q}. Then x+ Q is an equivalence class under ∼.

(i) (x+ Q) ∩ [0, 1] ̸= ∅ (easy).

(ii) Let E be a subset of [0, 1] that contains exactly one member from each x+Q, x ∈ R.
Let Q ∩ [−1, 1] = {r1, r2, . . .} and write Ei = E + ri, i = 1, 2, . . .
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(iii) Ei ∩ Ej = ∅, if i ̸= j.
If z ∈ Ei ∩ Ej, then z = x+ ri = y + rj

implies x− y = rj − ri ∈ Q

So x ∼ y, contradiction to the definition of E, as E contains exactly one member
from each x+ Q.

(iv) [0, 1] ⊂ ⋃∞
i=1 Ei ⊂ [−1, 2].

Let x ∈ [0, 1]. Then x+ Q must contains a point of E. That is, there exists unique
y ∈ (x+ Q) ∩ E, y − x ∈ Q ∩ [−1, 1]. Thus, y − x = ri0 implies x = y − ri0 ∈ Ei0 .

The set E is not Lebesgue measurable. On the contrary, if E ∈ M, then

1 ≤ m∗
( ∞⋃

i=1
Ei

)
≤ 3

1 ≤
∞∑

i=1
m∗(E) ≤ 3

which is not possible, because either m∗(E) > 0. If m∗(E) = 0, then m∗(Ei) = 0. But
[0, 1] ⊆ ⋃

Ei implies 1 ≤ ∑
m∗(Ei) = 0, which is a contradiction.

Remark 3.3.22. (i) m∗ is not countably additive.
Let A = ⋃∞

i=1 Ei. Then 1 ≤ m∗(A) ≤ 3. But ∑∞
i=1 m

∗(Ei) = ∞. Thus,

m∗
( ∞⋃

i=1
Ei

)
≤ 3 < ∞ =

∞∑
i=1

m∗(Ei)

(ii) Whether m∗ is finitely additive?
Suppose m∗ (⋃n

i=1 Ai) = ∑n
i=1 m

∗(Ai) for any A1, . . . , An ∈ P(R) = power set of R.
(in other words, let m∗ be finitely additive).
Now,

m∗(E) =
n∑

i=1
m∗(Ei)

= m∗
(

n⋃
i=1

Ei

)
≤ m∗

( ∞⋃
i=1

Ei

)
≤ 3

So,
m∗(E) < 3

n
, ∀n ∈ N

implies m∗(E) = 0, contradiction.
Therefore, m∗ cannot be finitely additive.
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(iii) Suppose A ⊂ E and A ∈ M, then m∗(A) = 0.
For this, let Ai = A+ ri, ri ∈ Q ∩ [−1, 1].
Then,

n⋃
i=1

Ai ⊂
∞⋃

i=1
Ei ⊂ [−1, 2]

Since A is Lebesgue measurable, each of Ai ∈ M. Thus,

m∗
(

n⋃
i=1

Ai

)
≤ 3

n∑
i=1

m∗(Ai) ≤ 3

So,
m∗(A) ≤ 3 implies m∗(A) ≤ 3

n
, ∀n ≥ 1

implies m∗(A) = 0

We know that m∗ : P(R) → [0,∞]. Restrict m∗ to M. Then for E ∈ M, we write
m∗(E) = m(E). that is, m∗|M = m (say).

Theorem 3.3.23. Let (En) ⊂ M be an increasing sequence of sets. Then

lim
n→∞

m(En) = m

( ∞⋃
n=1

En

)
(*)

Proof. Let E = ⋃
n En. If m(E) = ∞, then some of m(En0) = ∅. Hence (*) holds.

Therefore, suppose m(En) < ∞, ∀n ≥ 1. Since m(En) is an increasing sequence.

lim
n→∞

m(En) = sup
n
m(En) ≤ m(E).

Now,
∞⋃

n=1
En = E1

∞⋃
n=1

(En+1 \ En)

Thus,
m(E) = m(E1) +

∞∑
n=1

m(En+1 \ En)

= m(E1) + lim
k→∞

k∑
n=1

(m(En+1) −m(En))

= lim
k→∞

m(Ek+1)
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Theorem 3.3.24. Let (En) ⊂ M be a decreasing sequence of sets such that m(E1) < ∞.
Then

lim
n→∞

m(En) = m

( ∞⋂
n=1

En

)

Proof. Since m(En) ≥ m(En+1) ≥ m (⋂∞
n=1 En),

lim
n→∞

m(En) = inf
n
m(En) ≥ m

( ∞⋂
n=1

En

)

E1 \
∞⋂

n=1
En =

∞⋃
n=1

(En \ En+1) (Exercise)

m

(
E1 \

∞⋂
n=1

En

)
=

∞∑
n=1

m(En \ En+1)

m(E1) −m

( ∞⋂
n=1

En

)
= lim

k→∞

k∑
n=1

(m(En) −m(En+1))

= m(E1) − lim
k→∞

m(Ek+1)

implies m
( ∞⋂

n=1
En

)
= lim

k→∞
m(Ek+1)

Alternative: E1 \ En is a increasing in n.

lim
n→∞

m(E1 \ En) = m

( ∞⋃
n=1

(E1 \ En)
)

m(E1) − lim
n→∞

m(En) = m

(
E1 \

∞⋂
n=1

En

)

= m(E1) −m

( ∞⋂
n=1

En

)
So,

lim
n→∞

m(En) = m

( ∞⋂
n=1

En

)

Exercise 3.3.25. E ∈ M if and only if E ∩ (a, b) ∈ M, for all a, b ∈ R.
If E ∈ M, it follows immediately that E∩(a, b) ∈ M, for any a, b ∈ R, because (a, b) ∈ M.
Suppose E ∩ (a, b) ∈ M, for all a, b ∈ R.
Then E ∩ (k, k + 1] = E ∩ (k, k + 1) ∪ (E ∩ {k + 1}) ∈ M (since m∗(E ∩ {k + 1}) = 0).
But E = ⋃

k∈Z(E ∩ (k, k + 1]) ∈ M.
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Theorem 3.3.26. E ∈ M if and only if for all A ⊂ R, we have

m∗(A) = m∗(A ∩ E) +m∗(A \ E) (1)

But, proving (*), it is enough to prove

m∗(A) ≥ m∗(A ∩ E) +m∗(A \ E)

Proof. If m∗(A) = ∞, then (1) is true.
Suppose m∗(A) < ∞, and E ∈ M. Then there exist Gδ set G ⊇ A such that m∗(A) =
m∗(G). (since G = ⋂∞

n=1 On)

therefore m∗(A∩E)+m∗(A\E) ≤ m∗(G∩E)+m∗(G\E) = m∗((G∩E)⊔(G\E)) = m∗(G) = m∗(A).

Now, let (1) holds. Claim: E ∈ M.
First consider m∗(E) < ∞. Then there exist Gδ set G such that E ⊆ G and m∗(G) =
m∗(E) < ∞. Since (1) is true for all A ⊂ R,

m∗(G) = m∗(G ∩ E) +m∗(G \ E)

that is m∗(G) = m∗(G) +m∗(G \ E)
So, m∗(G \ E) = 0 implies G \ E ∈ M.
ButG\(G\E) = E implies E ∈ M. Ifm∗(E) = ∞, then, write E = ⋃

n∈Z(E∩(n, n+1]) =⋃
n∈ZEn.

We claim that E ∈ M. For this, we all need to prove that if E1, E2 satisfy (1), then
E1 ∩ E2 satisfies (1). From the bounded case (n, n + 1] ∈ M if and only if (n, n + 1]
satisfies (1)). Thus,

m∗(A) = m∗(A ∩ En) +m∗(A \ En)
Since En = E∩(n, n+1]. Hence, by the bounded caseEn ∈ M. SinceE = ⋃

En implies E ∈
M. Now,

m∗(A) = m∗(E1 ∩ A) +m∗(A \ E1) (2)
m∗(A) = m∗(E2 ∩ A) +m∗(A \ E2) (3)

Replace A in (3) by A ∩ E1 and A \ E1 and use them in (2). Then R.H.S. of (1)

= m∗(E1 ∩ E2 ∩ A) +m∗(A ∩ E1 \ E2) +m∗(E2 ∩ (A \ E1)) +m∗(A \ E2 \ E1)

≥ m∗((E1 ∩ E2 ∩ A) ∪ (A ∩ E1 \ E2) ∪ (E2 ∩ (A \ E1)) ∪ (A \ E2 \ E1))
≥ m∗(A) (using (1))

Thus, (E1 ∪ E2)c = Ec
1 ∩ Ec

2 will satisfy (1), as (1) is closed under complement. (1) is
called Carathéodory’s criterion of measurability.
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3.4 Measurable functions and integration

3.4.1 Measurable functions
Let Ju = collection of all open subsets of R with respect to the usual metric u on R.

{O ⊂ R : O =
∞⋃

n=1
In, In = (an, bn)}

and M = class of all Lebesgue measurable subsets of R.
Jd0 = collection of all open sets of R with respect to d0 — the discrete metric on

R = P(R).
implies Ju ⊊ M ⊊ Jd0 = P(R).

Since Ju is not closed under countable intersections (and complements) of open sets,
implies Ju ⊊ M and M ⊊ Jd0 , because every subset need not be Lebesgue measurable.

Consider f : (R,Ju) → (R,Ju) continuous. Then f−1(O) ∈ Ju, ∀ O ∈ Ju (from range
side).
Now, if f : (R,M) → (R,Ju), what happen to f−1(O)? If f is continuous on (R,Ju),
then f−1(O) is open and hence f−1(O) ∈ M.
In addition, consider f(x) = 1

x
, x ∈ R \ {0}, then f cannot be made continuous at 0 but

f(x) = ∞ if and only if x = 0. (important!)
If we want to take f(x) = 1

x
into consideration, we here to extend the range (−∞,∞) to

[−∞,∞]. Let R = (−∞,∞) and R = [−∞,∞]. Therefore, the sets [−∞, a) and (b,∞]
for a, b ∈ R should be added to Ju. That is,

J u = Ju ∪ {[−∞, a) ∪ (b,∞] : a, b ∈ R}

Definition 3.4.1. Let f : (R,M) → (R,J u) is said to be Lebesgue measurable if
f−1(O) ∈ M, for all O ∈ J u.
Since O ∈ J u can be expressed as the countable union/intersection of sets of the form
[−∞, a) and (b,∞] and M is closed under countable union/intersection, it is enough to
consider O = (b,∞] or [−∞, a).
Thus, f : (R,M) → (R,J u) or R is Lebesgue measurable if f−1{(α,∞]} ∈ M, ∀α ∈ R.

Proposition 3.4.2. If f : (R,M) → R = [−∞,∞]. Then the following are equivalent:

1. f−1{(α,∞]} ∈ M, for all α ∈ R.

2. f−1{[α,∞]} ∈ M, for all α ∈ R.

3. f−1{[−∞, α)} ∈ M, for all α ∈ R.

4. f−1{[−∞, α]} ∈ M, for all α ∈ R.
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5. f−1{±∞} ∈ M and f−1{(a, b)} ∈ M, for all a, b ∈ R.

Proof. (i) implies (ii):

[α,∞] =
∞⋂

n=1
(α− 1

n
,∞] ∋ x,

let x /∈ [α,∞] implies α > x > α − 1
n
, ∀n ≥ 1 implies α = x = α, which is a

contradiction.
Since M is closed under complement, so (ii) implies (iii).
Now, (iii) implies (iv), because

[−∞, α] =
∞⋂

n=1
[−∞, α + 1

n
)

(iv) implies (i) as M is closed under complements (since Mc = M).
Thus, (i) to (iv) are equivalent. Hence,

f−1(∞) =
⋃
f−1{(n,∞]} ∈ M (by (i))

f−1(−∞) =
⋃
f−1{[−∞,−n)} ∈ M (by (iii))

(a, b) = (a,∞] ∩ [−∞, b)
implies f−1{(a, b)} ∈ M , ∀ a, b ∈ R

Example 3.4.3. Let E ∈ M, define

f(x) = χE(x) =
1 x ∈ E

0 x /∈ E

f−1({(α,∞]} =


E α = 0
E 1 > α > 0
∅ α ≥ 1
R α < 0

Example 3.4.4. f : R → R, f(x) = k is Lebesgue measurable.

f−1{(α,∞]} =
∅ if α ≥ k

R if α < k

f k-finite. If k = ∞, f(x) = ∞, ∀x ∈ R. Then f−1{(α,∞]} = R.
Notice that for α ∈ R, ∃rj ∈ Q such that rj increases to α.
f(x) ≥ α implies f(x) ≥ α > rj, ∀j.
So {x : f(x) > α} = ⋂∞

j=1{x : f(x) > rj}. Thus, f is Lebesgue measurable if and only
if f−1{(rj,∞]} ∈ M, for all rj ∈ Q.
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Example 3.4.5. If f, g : R → R be Lebesgue measurable such that f(x)+g(x) ̸= ∞−∞,
for any x ∈ R. Then f + g is Lebesgue measurable.
Thus, we need to show the following sets to be Lebesgue measurable.

A = {x ∈ R : f(x) + g(x) = ±∞}

B = {x ∈ R : ∞ > f(x) + g(x) > α}, ∀α ∈ R
A = {x ∈ R : f(x) = ±∞ + g(x)} if g(x) are finite (or otherwise)

For x ∈ B, ∞ > f(x) + g(x) > α, ∃rx such that f(x) > rx > α− g(x)

x ∈
⋃

r∈Q
({x : f(x) > r}

⋂
{x : g(x) > α− r})

implies B =
⋃

r∈Q
({x ∈ R : f(x) > r}

⋂
{x ∈ R : g(x) > α− r}) implies B ∈ M

Exercise 3.4.6. {x : f 2(x) > α} = {x : f(x) >
√
α}⋃{x : −f(x) >

√
α} ∈ M.

Exercise 3.4.7. 4fg = (f + g)2 − (f − g)2 implies if f, g are Lebesgue measurable, then
f 2, fg are Lebesgue measurable.
Definition 3.4.8. A property P is called “holding almost everywhere” if the places (or
points) where it false have Lebesgue measure zero, that is, P is true almost everywhere.

m∗ ({x ∈ R : P is false}) = 0

If f = g almost everywhere on R, then

m∗ ({x ∈ R : f(x) ̸= g(x)}) = 0

Example 3.4.9. If f : R → R and f(x) = 0 for almost everywhere x ∈ R, then f is
Lebesgue measurable.
Let E = {x ∈ R : f(x) ̸= 0}, then m∗(E) = 0 implies E,Ec ∈ M, and so forth.
Proposition 3.4.10. If f, g are Lebesgue measurable, then

max{f, g} = f + g + |f − g|
2

min{f, g} = f + g − |f − g|
2

sup fn, inf fn, lim sup fn, lim inf fn, limfn are all Lebesgue measurable.

Proposition 3.4.11. If f : R → R be such that f(x) ̸= 0, ∀x ∈ R, then 1
f

is measurable.

Proof. {
x : 1

f(x) > α

}
= {x : f(x) > 1

α
, α < 0}

⋃
{x : f(x) < 1

α
, α > 0} ∈ M
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3.4.2 Simple functions
Let Ei ∈ M and αi ∈ R. Then φ = ∑n

i=1 αiχEi
is called a simple function.

Example 3.4.12. φ = 1 · χ[0,1] + 2 · χ[2,3]

Theorem 3.4.13. Let f : R → [0,∞] be a measurable function. Then there exist a
sequence (φn) of simple functions such that:

(i) φn ↑ and φn ≤ f .

(ii) φn → f pointwise.

(iii) φn → f uniformly on any set A where f is bounded.

Proof. We first divide the image of f in [0, 2n] into 22n disjoint parts. k = 0, 1, 2, . . . , 22n −
1.

f−1
([

k

2n
,
k + 1

2n

))
= En,k and f−1 ([2n,∞]) = Fn

Then (i) φn ≥ 0, (ii) En,k’s are disjoint measurable sets, (iii) φn ↑ on [0,∞].
Claim: φn(x) ≤ φn+1(x).
If x ∈ En,k =

{
x : 2k

2n+1 ≤ f(x) < 2k+2
2n+1

}
= En+1,2k

⋃
En+1,2k+1.

For x ∈ En+1,2k, φn(x) = k
2n = 2k

2n+1 = φn+1(x).
For x ∈ En+1,2k+1, φn(x) = 2k+1

2n+1 = φn+1(x).
If x ∈ Fn, then x ∈ (Fn \ Fn+1)

⋃
Fn+1.

For x ∈ Fn+1, φn(x) = 2n < 2n+1 = φn+1(x).
For x ∈ Fn \ Fn+1, we have

2n = 22n+1

2n+1 ≤ f(x) < 2n+1 = 22n+2

2n+1

that is, x ∈ En+1,22n+1
⋃
. . .
⋃
En+1,22n+2−1. Then, φn+1(x) ∈

{
22n+1

2n+1 , . . . ,
22n+2−1

2n+1

}
. Thus,

φn(x) = 2n = 22n+1

2n+1 ≤ φn+1(x).

That is, φn ↑ and φn ≤ f.
(iv) φn → f pointwise.

Let f(x) < ∞. Then

{x : f(x) < ∞} =
∞⋃

m=1
{x : f(x) < 2n}

Therefore, f(x) < 2n, for some n, and hence x ∈ En,k implies φn(x) = k
2n

therefore k

2n
≤ f(x) < k + 1

2n
implies 0 ≤ f(x)−φn(x) < 1

2n
, n ≥ 1 implies φn → f pointwise.

(*)
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If f(x) = ∞, for some x. Then {x : f(x) = ∞} = ⋂∞
n=1{x : f(x) ≥ 2n}.

So, φn(x) = 2n → ∞ = f(x).
(v) φn → f uniformly on a set where f is bounded.
Let E = {x : f(x) ≤ M}. Then, ∃n0 such that f(x) < 2n, ∀n ≥ n0,
Hence, from (*), 0 ≤ f(x) − φn(x) < 1

2n , ∀n ≥ n0
Notice that n0 is free (or unique on E) of x ∈ E. Thus,

0 ≤ sup(f(x) − φn(x)) ≤ 1
2n

→ 0.

Hence, φn → f uniformly on E.

Corollary 3.4.14. If f : R → R is measurable. Then there exists a sequence of simple
functions such that |φn| ↑ |f | pointwise.

Proof. f = f+ − f−. Then there exist φ+
n ↑ f+ and φ−

n ↑ f−. That is,

φn = φ+
n − φ−

n → f+ − f− = f

|φn| = φ+
n + φ−

n ≤ f+ + f− and |φn| ↑ |f |

In this case,
|f − φn| = |f+ − φ+

n + f− − φ−
n | → 0

and φn → f uniformly on E = {x : |f(x)| < M}.

Note that,
f+ = max{f, 0}, f− = − min{f, 0}.

Adoptions: 0 · ∞ = 0, ∞ · 0 = 0.
Example: 0 ·m(R) = 0, ∞ ·m(Q) = 0.
Avoidation: ∞ − ∞.

3.4.3 The Lebesgue integral
Let φ : R → R such that

φ =
m∑

j=1
αjχEj

, αj ∈ [0,∞],

and Ej ∈ M and m(Ej) ≤ ∞. Then we write
∫
R
φdm =

m∑
j=1

αjm(Ej).

Remark 1.
∫
R φdm = 0 if and only if φ = 0.
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Now, if E ∈ M, then φ|E = ∑m
j=1 αjχEj∩E, hence

∫
E
φdm =

m∑
j=1

αjm(Ej ∩ E)

Notice that (R,M,m) is called Lebesgue measure space. If E ∈ M, then for

ME = {F ∩ E : F ∈ M}, (E,ME,m)

is also a Lebesgue measure space on E.
Remark 2. Since E1 ∪ E2 = (E1 \ E2) ∪ (E1 ∩ E2) ∪ (E2 \ E1), in the definition of φ, one
can assume {Ej : j = 1, 2, . . . , n} is a disjoint family, that is, Ej ∩ Ei = ∅ if i ̸= j.

Now, let f : R → [0,∞] be measurable, then there exists a sequence of simple functions
φn ↑ f pointwise. Hence

∫
R φn dm ↑ sequence in R.

Thus, we define ∫
R
f dm := sup

n≥1

∫
R
φn dm

or ∫
R
f dm = sup

{∫
R
φdm : φ ≤ f

}
If f : R → R measurable, then f = f+ − f−. We write∫

R
f dm =

∫
R
f+ dm−

∫
R
f− dm,

if at least either of
∫
R f

+ dm or
∫
R f

− dm is finite.
Let

L+(R,M,m) = {f : R → [0,∞] : f measurable}

Proposition 3.4.15. For φ, ψ simple functions in L+(R,M,m) and c ∈ R = [0,∞],

(i)
∫
R cφ = c

∫
R φ.

(ii)
∫
R(φ+ ψ) =

∫
R φ+

∫
R ψ.

(iii) If φ ≤ ψ, then
∫

R φdm ≤
∫

R ψ dm.

Proof. (i) is trivial.

(ii) Let φ = ∑m
j=1 αjχEj

, ψ = ∑m
k=1 βkχFk

.

Notice that by assigning 0 on
(⋃n

j=1 Ej

)c
, one can assume that R = ⋃n

j=1 Ej, R =⋃m
k=1 Fk.

Then Ej = ⋃m
k=1(Ej ∩ Fk), Fk = ⋃n

j=1(Ej ∪ Fk).
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Now,
∫
R
φdm+

∫
R
ψ dm =

n∑
j=1

m∑
k=1

αjm(Ej ∩ Fk) +
m∑

k=1

n∑
j=1

βkm(Ej ∩ Fk)

=
m∑

k=1

n∑
j=1

(αj + βk)m(Ej ∩ Fk) (1)

∫
R
(φ+ ψ)dm =

∫
R

m∑
k=1

n∑
j=1

(αj + βk)χEj∩Fk
dm

=
∫
R
φdm+

∫
R
ψ dm (by (1))

(iii) If φ ≤ ψ, then αj ≤ βk, when Ej ∩ Fk ̸= ∅.

∫
R
φdm =

n∑
j=1

m∑
k=1

αjm(Ej ∩ Fk) ≤
n∑

j=1

m∑
k=1

βkm(Ej ∩ Fk) =
∫
R
ψ dm.

Proposition 3.4.16. If f, g ∈ L+(R,M,m), then for f ≤ g,
∫
R f dm ≤

∫
R g dm.

For this, let φ ≤ f , φ simple, then φ ≤ g

implies
∫
R
f dm = sup

φ≤f

∫
R
φdm ≤ sup

φ≤g

∫
R
φdm =

∫
R
g dm.

Proposition 3.4.17. If f, g ∈ L+(R,M,m), then∫
R
(f + g) dm =

∫
R
f dm+

∫
R
g dm.

(We prove it later!)

3.5 Convergence theorems and Lp spaces

3.5.1 Monotone convergence theorem
Theorem 3.5.1 (Monotone Convergence Theorem). Let fn, f ∈ L+(R,M,m) be such
that fn ↑ f pointwise. Then ∫

R
f dm = lim

n→∞

∫
R
fn dm.
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Proof: Since fn ≤ fn+1 ≤ f , the limit of
∫
R fn will be bounded above by

∫
R f . Hence,

lim
n→∞

∫
R
fn ≤

∫
R
f.

In order to show the other inequality, it is enough to show that for each ϵ > 0,

lim
n→∞

∫
R
fn ≥ (1 − ϵ)

∫
R
f,

or for φ ≤ f ,
lim

n→∞

∫
R
fn ≥ (1 − ϵ)

∫
R
φ.

Let En = {x ∈ R : fn(x) ≥ (1 − ϵ)φ(x)}. Since fn ↑ f , En ⊆ En+1. Moreover,
R = ⋃∞

n=1 En. For, let x ∈ R, then fn(x) ↑ f(x), and so for some n, fn(x) ≥ (1 − ϵ)φ(x).
If not, fn(x) < (1 − ϵ)φ(x) for all n, so f(x) ≤ (1 − ϵ)φ(x), φ ≤ f ⇒ Contradiction. Let
ν(En) =

∫
En
φ. Then ν becomes a measure on (R,M) and En ↑ R. Hence,

lim
n→∞

ν(En) = ν(R).

Thus,
(1 − ϵ)

∫
R
φ = lim

n→∞

∫
En

(1 − ϵ)φ ≤ lim
n→∞

∫
En

fn ≤ lim
n→∞

∫
R
fn.

Remark 3.5.2. fn ↑ f is necessary in monotone convergence theorem.

Example 3.5.3. fn = 1
n
χ[0,n] → 0.

∫
R
fn dm = 1 ̸= 0 =

∫
R

lim fn dm.

Example 3.5.4. Verify MCT for fn : R → [0,∞], given by.

(i) fn = χ(n,n+1).

(ii) fn = nχ(0, 1
n

).

Remark 3.5.5. Integration is a linear map on L+(R,M,m), that is, f 7→
∫
R f dm is

linear.
Let f, g ∈ L+(R,M,m). Then there exists φn ↑ f and ψn ↑ g. By MCT,∫

R
(f + g) dm = lim

n→∞

∫
R
(φn + ψn) dm

= lim
n→∞

(∫
R
φn dm+

∫
R
ψn dm

)
=
∫
R
f dm+

∫
R
g dm.
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Example 3.5.6. For E ∈ M, and f ∈ L+(R,M,m), if
∫

E f dm = 0, then f = 0, provided
m(E) > 0. ∫

E
f dm = sup

φ≤f

∫
E
φ = 0 implies

∫
E
φ = 0 implies φ = 0.

Corollary to MCT: Let fn, f ∈ L+(R,M,m) be such that fn ↑ f pointwise almost
everywhere on R. Then ∫

R
f dm = lim

n→∞

∫
R
fn dm.

Proof. Let fn ↑ f pointwise on A, then m∗(Ac) = 0. So, A,Ac ∈ M. That is, χEfn →
χEf . By MCT, ∫

χAf = lim
n→∞

∫
χAfn

implies
∫

A
f dm = lim

n→∞

∫
A
fn dm.

Now, ∫
R
f dm =

∫
A
f dm+

∫
Ac
f dm = lim

n→∞

∫
A
fn dm+

∫
Ac
fn dm

Thus, ∫
R
f dm = lim

n→∞

∫
R
fn dm

Theorem 3.5.7. Let f ∈ L+(R,M,m). Then∫
R
f dm = 0 if and only if f = 0 almost everywhere on R.

Proof. For f = φ = ∑n
j=1 αjχEj

,∫
R
φdm = 0 if and only if either αj = 0 or m(Ej) = 0, ∀j = 1, 2, . . . , n

that is
∫
R
φdm = 0 if and only if φ = 0 almost everywhere

Now, if f = 0 almost everywhere,∫
R
f dm = sup

φ≤f

∫
R
φdm = 0 (by previous case)

Suppose
∫
R f dm = 0. Then consider

E = {x ∈ R : f(x) > 0} =
∞⋃

n=1

{
x ∈ R : f(x) > 1

n

}
=

∞⋃
n=1

En (say).

Now, m(En) = n
∫

En

1
n
dm ≤ n

∫
En
f dm ≤ n

∫
R f dm = 0.

Thus, m(E) = 0 implies f = 0 almost everywhere
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3.5.2 Fatou’s lemma
Lemma 3.5.8 (Fatou’s Lemma). Let fn ∈ L+(R,M,m). Then∫

R
limfn dm ≤ lim

∫
R
fn dm

Proof. Let gk = infn≥k fn. Then gk ≤ fj, for all j ≥ k. Thus,
∫
R gk ≤ infj≥k

∫
R fj.

Now,
gk ↑ sup

k≥1

(
inf
n≥k

fn

)
By the Monotone Convergence Theorem (MCT),∫

R
limfn dm =

∫
R

lim
k→∞

gk dm = lim
k→∞

∫
R
gk dm ≤ lim

k→∞
inf
j≥k

∫
R
fj dm

Remark 1: Strict inequality can hold.
For fn = 1

n
χ[0,n] → 0 uniformly, then

∫
R limfn dm = 0 < 1 = lim

∫
R fn dm.

Remark 2: Fatou’s Lemma need not hold beyond non-negative functions.

Example 3.5.9. let fn = − 1
n
χ[n,2n], ∀n ≥ 1.

Now, infn≥k fn(x) = infn≥k

{
− 1

n

}
= − 1

k
.

sup
k≥1

(
inf
n≥k

fn(x)
)

= 0 that is limfn(x) = 0∫
R

limfn = 0 > −1 = lim
∫
R
fn.

Let f : (R,M,m) → R = [−∞,∞] be measurable. Then f = f+ − f− and f+, f− are
L-measurable.

Definition 3.5.10. If
∫
R f

+ dm < ∞ and
∫
R f

− dm < ∞ both hold, then we say f is
integrable, and ∫

R
f dm =

∫
R
f+ dm−

∫
R
f− dm

Since |f | = f+ + f−. It follows that
∫
R f dm is finite if and only if

∫
R |f | dm is finite.

Let
L1(R,M,m) =

{
f : R → R : f measurable and

∫
R

|f | < ∞
}

We also use the symbols L1(R) or L1(R,m) or L1(R,M,m).
Notice that L1 is a linear space over R.
Since∫
R

|f | = 0 if and only if |f | = 0almost everywhere if and only if f = 0almost everywhere
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If we adopt f = 0 if and only if f = 0 almost everywhere Then L1(R,M,m) is a normed
linear space with ∥f∥1 =

∫
R |f | dm.

Proposition 3.5.11. If f ∈ L1(R,M,m), then∣∣∣∣∫
R
f dm

∣∣∣∣ ≤
∫
R

|f | dm

Proof.∣∣∣∣∫
R
f dm

∣∣∣∣ =
∣∣∣∣∫

R
f+ dm−

∫
R
f− dm

∣∣∣∣ ≤
∣∣∣∣∫

R
f+ dm

∣∣∣∣+∣∣∣∣∫
R
f− dm

∣∣∣∣ =
∫
R
f+ dm+

∫
R
f− dm =

∫
R

|f | dm

3.5.3 Chebyshev’s inequality
Let f ∈ L1(R,M,m). Then m ({x ∈ R : |f(x)| ≥ α}) ≤ 1

α
∥f∥1.

Proof.

the left-hand side = 1
α

∫
{x:|f(x)|≥α}

α dm ≤ 1
α

∫
{x:|f(x)|≥α}

|f(x)| dm ≤ 1
α

∫
R

|f(x)| dm = 1
α

∥f∥1

.

Corollary 3.5.12. If f ∈ L1(R,M,m), then m{x ∈ R : |f(x)| = ∞} = 0 that is, an
L1-function is almost finite.

Proof. m{x : |f(x)| = ∞} = m{⋂{x : |f(x)| ≥ n}}. But m{x : |f(x)| ≥ n} ≤ 1
n
∥f∥1.

So, m{x : |f(x)| = ∞} ≤ m{x : |f(x)| ≥ n} ≤ 1
n
∥f∥1 → 0 as n → ∞.

3.5.4 Dominated convergence theorem
Theorem 3.5.13 (Dominated Convergence Theorem). Let fn : (R,M,m) → R be a
sequence of measurable functions such that

(i) fn(x) → f(x) pointwise, for all x ∈ R.

(ii) |fn| ≤ g ∈ L1(R,M,m).

Then ∫
R
f dm = lim

n→∞

∫
R
fn dm
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Proof. Since fn → f pointwise and |fn| ≤ g ∈ L1(R,M,m),

implies |fn| → |f | implies |f | ≤ g ∈ L1 implies f ∈ L1

Now,
0 ≤ g + fn → g + f pointwise

0 ≤ g − fn → g − f pointwise

By Fatou’s Lemma,∫
R
(g + f) dm =

∫
R

lim
n→∞

(g + fn) dm ≤ lim
∫
R
(g + fn) dm

implies
∫
R
f dm ≤ lim

∫
R
fn dm (since

∫
R
g < ∞)

Similarly, ∫
R
(g − f) dm =

∫
R

lim
n→∞

(g − fn) dm ≤ lim
∫
R
(g − fn) dm

−
∫
R
f dm ≤ −lim

∫
R
fn dm

that is
∫
R
f dm ≥ lim

∫
R
fn dm

So,
lim

∫
R
fn dm ≤

∫
R
f dm ≤ lim

∫
R
fn dm

implies lim
∫
R
fn =

∫
R
f.

Exercise 3.5.14. Verify the Dominated Convergence Theorem for fn : (R,M,m) → R,
where

(i) fn = nχ[0, 1
n

].

(ii) fn = 1
n
χ[n,n+1].

(iii) fn = χ[n,n+1].

(Hint: fn → 0,
∫
R fn = 1).
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3.5.5 Bounded convergence theorem
Theorem 3.5.15 (Bounded Convergence Theorem). Let E ∈ M and 0 < µ(E) < ∞. If
fn, f : (E,ME,m) → R be such that

(i) |fn(x)| ≤ M , ∀n ∈ N, ∀x ∈ E.

(ii) fn → f pointwise.

Then ∫
E
f = lim

n→∞

∫
E
fn

Proof. ∫
E

|fn| ≤
∫

E
M = Mm(E) < ∞

So, fn are dominated by M . And by Dominated Convergence Theorem,∫
E
f = lim

n→∞

∫
E
fn

Theorem 3.5.16. If f is bounded. Then f ∈ R[a, b] if and only if f is continuous on
[a, b] almost everywhere, that is, there exists g : [a, b] → R continuous such that f = g
almost everywhere.

Theorem 3.5.17. Every Riemann integrable function is Lebesgue integrable, that is,
R[a, b] ⊂ L1[a, b].
If f ∈ R[a, b], then f = g almost everywhere, where g is continuous on [a, b]. Therefore,
g is measurable and hence f is measurable.
If f ∈ R[a, b], then

inf
P
U(P, f) =

∫ b

a
f(x) dx

sup
P
L(P, f) =

∫ b

a
f(x) dx

both exist and are equal to
∫ b

a f(x)dx. But for Lebesgue integration, we only want

sup
P
L(P, f) =

∫
f dm

Hence f ∈ R[a, b] implies f ∈ L1[a, b].
(Note that this is just an intuition and not a proof.)

Theorem 3.5.18. Let f ∈ R[a, b]. Then f ∈ L1[a, b] and∫
[a,b]

f dm =
∫ b

a
f(x) dx
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Proof. Let I = [a, b] and f ∈ R(I), then there exists an increasing sequence of partitions
Pn of I such that

limU(Pn, f) = limL(Pn, f) =
∫ b

a
f(x)dx.

For a partition P of [a, b], denote

φP =
k∑

j=1
Mjχ(tj−1,tj ], Mj = sup

[tj−1,tj ]
f(x)

and
ψP =

k∑
j=1

mjχ(tj−1,tj ], mj = inf
[tj−1,tj ]

f(x),

where P = {a = t0 < t1 < · · · < tj−1 < tj < · · · tk = b}.
Then φP ↓ sequence and ψP ↑ sequence. Since f ∈ R(I), ∃M,m > 0 such that m ≤
f(x) ≤ M but then

m ≤ ψPn(x) ≤ f(x) ≤ φPn(x) ≤ M (1)
For each fixed x ∈ I, φPn(x) ↓ sequence bounded below by m and ψPn(x) ↑ sequence
bounded above by M . Let

lim
n→∞

φPn(x) = φ(x), lim
n→∞

ψPn(x) = ψ(x)

Then
m ≤ ψ(x) ≤ f(x) ≤ φ(x) ≤ M (2)

Then ψ and φ being limit of simple functions are measurable.
By Bounded Convergence Theorem,∫

I
φdm = lim

n→∞

∫
I
φn dm = lim

n→∞
U(Pn, f) =

∫ b

a
f(x)dx

Similarly, ∫
I
ψ dm = lim

n→∞

∫
I
ψn dm = lim

n→∞
L(Pn, f) =

∫ b

a
f(x)dx

Therefore∫
I
(φ− ψ) dm = 0 if and only if φ− ψ = 0 almost everywhere (since φ− ψ ≥ 0)

From ψ(x) ≤ f(x) ≤ φ(x) almost everywhere. So f(x) = ψ(x) almost everywhere implies
f is measurable. Thus, ∫

I
f dm =

∫
I
ψ dm =

∫ b

a
f(x)dx

Note: R[a, b] ⊊ L1[a, b]. Since f = χ(R\Q)∩[0,1],
∫

[0,1] f dm = 1 but L(P, f) = 0 and
U(P, f) = 1, ∀P .

.
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