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Introduction

Real Analysis provides the rigorous foundations of calculus and, more broadly, of modern
mathematical analysis. The guiding theme of the course is the systematic study of lim-
iting processes: convergence of sequences and functions, continuity and differentiability
defined through limits, and integration built upon measurable structures. Throughout,
emphasis is placed on precise definitions, correct quantifiers, and logically complete proofs,
together with carefully chosen examples and counterexamples that clarify the necessity of
hypotheses and the sharpness of conclusions.

We begin with metric spaces (X, d), the natural setting in which convergence and
continuity can be formulated beyond R. We study open and closed sets, interior and
closure, limit points, compactness, and the topological characterization of continuity. We
then move to normed linear spaces (V, || - ||), where algebraic and topological structures
interact. A central concept is completeness, which ensures that every Cauchy sequence
converges and underlies fundamental existence results such as the contraction mapping
principle. Uniform convergence is treated as a key mode of convergence for sequences
of functions, since it provides control strong enough to justify passing limits through
continuous operations under appropriate assumptions. Classical inequalities, including
Young’s, Holder’s, and Minkowski’s inequalities, are developed as essential tools for norm
estimates and convergence arguments.

The second part focuses on functions on R™. After formalizing limits and continuity in
Euclidean space, we study partial derivatives, directional derivatives, and differentiability
in the Fréchet sense, where differentiability at a point means approximation by a linear
map with a remainder term that is small compared with ||h||. From this viewpoint we
develop the multivariable chain rule and Taylor’s theorem with remainder, which describe
the local structure of smooth functions and provide quantitative error estimates. These
results culminate in the inverse mapping theorem and the implicit function theorem, which
give precise conditions for local invertibility of maps and for representing solution sets of
equations F(x,y) = 0 as graphs of functions.

In the final part, we develop Lebesgue measure and integration to address the lim-
itations of Riemann integration. We construct outer measure, define measurable sets
using Carathéodory’s criterion, and obtain Lebesgue measure on R. Measurable func-
tions are introduced via approximation by simple functions, leading to the definition of
the Lebesgue integral for nonnegative functions and then for integrable functions. The
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principal convergence theorems—the monotone convergence theorem, Fatou’s lemma, and
the dominated convergence theorem—are proved and used to justify the interchange of
limits and integrals in a principled way. Classical examples, including the Cantor set,
illustrate null sets, non-measurable phenomena, and the distinction between pointwise
and uniform convergences.

By the end of the course, students should be able to analyze convergence and conti-
nuity in metric and normed spaces, apply the main structural theorems of multivariable
differentiability, and use Lebesgue measure and integration as foundational tools for fur-
ther study in analysis, probability, and partial differential equations.



Chapter 1

Metric and Normed Linear Spaces

This chapter develops the basic language of analysis in abstract spaces. We intro-
duce metrics and norms, discuss sequences and their convergence, and study the
topology induced by a metric through open and closed sets, interior and closure.
Completeness and Cauchy sequences lead to the key notion of a complete metric
space, while density and continuity clarify how analytic structure behaves under map-
pings. Finally, uniform convergence and the contraction mapping principle (Banach
fized point theorem) provide powerful tools used repeatedly later; Young’s, H'older’s,
and Minkowski’s inequalities are included as essential estimates connecting normed
spaces to LP-type analysis.

1.1 Syllabus map

This chapter is organized into three thematic parts:

(1) Metric spaces and topology: open and closed sets, interior and closure, dense
subsets, continuity, compactness, and completeness.

(2) Normed vector spaces: norms, norm-induced metrics, and standard examples,
together with basic inequalities.

(3) Uniform convergence: uniform convergence of sequences of functions and differen-
tiation under the limit.

1.2 Metric spaces

Let X be a non-empty set. A map d: X x X — R" = [0, 00) such that

(i) d(z,y) =0ifand only if x =y, =,y € X.
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(ii) d(z,y) = d(y,z) (symmetric).
(iii) d(z,2) < d(z,y)+d(y,z) (triangle inequality).

is called a metric on X, and the pair (X, d) is called a metric space.

Example 1.2.1. If X = R", then for z,y € R,

L di(z,y) = >0 |z — vil;

D=

2. dy(z,y) = (0 o — wil?) 2

3. doo(xv 3/) = SUPj<i<n |$z - yz‘|;

define metrics on R™.

Example 1.2.2. Let (X,d) be a metric space. Prove that d'(z,y) = min{l,d(z,y)}
defines a metric.

Example 1.2.3. If X = C[0, 1], the space of continuous functions on [0, 1], then for
f9eX,

doo(f,9) = sup [f(t) — g(t)]
0<t<1
defines a metric on R.

(Hint: f is continuous on [0, 1], so f is bounded and |f(t) — h(t)| < |f(t) — g(t)| + |g(t) —
h(t)].)

Example 1.2.4. If X # (), then for z,y € X,

1, z#y
0, z=y

dO(x7 y) = {
defines a metric on X. This is called the discrete metric on X and (X, dy) is called discrete

metric space. Thus, every non-empty set has a metric.

Note that for d(z,z) < d(x,y) + d(y, z) to hold, we need to verify three cases:

1. x=y, y# =z

2. v £y, y==z.

3. all of x,y, z are distinct.

d
Example 1.2.5. Let (X, d) be a metric space, then <X, 1—|—d> is also a metric space.
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t
For this, consider, f(t) = T7¢ t € [0,00). Then f'(t) =

strictly increasing function and f(0) = 0. On the other hand

TEmE > 0. Hence, f is a

t+s - t n s
1+t+s 1+t 1+s

Put t = d(x,y), s = d(y,z). Then

t+s>d(x,z) and [ is strictly increasing

t
implies fod(x,z)gf(t+s)<m+ 1j—s

= fod(z,y)+ fodly,z).

Example 1.2.6. Let (X, d) be a metric space. Suppose and f : [0,00) — [0,00) be an
increasing function such that f(s +¢) < f(s) + f(t) and f(t) = 0 if and only if ¢t = 0.
Then f od is a metric on X.

Example 1.2.7. Let H* (Hilbert cube) be the space of sequences x = (x,,) = (L1, %2, ..., Tp, .- -

such that |z,| < 1. Then

> Tp — yn
d(x,y) = Z ’2n|
n=1
defines a metric on H®°.
(i) d(z,y) <X & < oo.

k . k B k B
implies ZMS ZM_,_ZM

< d(z,y) +d(y, z) < oo.

Since the left-hand side is an increasing sequence which is bounded above, it follows
that

k—oo “—

k p—
tim > P2 < e y) a2
n=1

implies d(z, z) < d(z,y) + d(y, z).

Exercise 1.2.8. Prove that d(z,y) = ‘% - %‘ defines a metric on (0, 00).
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1.3 Normed linear spaces and fundamental inequali-
ties

1.3.1 Normed linear spaces

Let X be a vector space over the field R or C. A map |- : X — [0, 00) is called a norm
if.

(i) |||l = 0 if and only if x = 0.
(ii) [Jax| = |a|||z|, for all z € X, for all @ € R or C.
(iii) [lz +yll < fl=ll + llyl, for all 2,y € X.

If we write d(x,y) = || — y||, then d is a metric on the vector space X. But all metric on
a vector space cannot be obtained by norm.

Example 1.3.1. Let X be a vector space. Then the discrete metric cannot be induced
by any norm on X.

For this, if so then dy(x,y) = ||z — y||. Then for x # 0,
2]l = do(x,0) =1 = do(ax,0) = [lax| = |af[lz]l, Vo

However, if d is a metric on a vector space X such that d(z,y) = d(x—y,0) and d(az,ay) =
|a|d(z,y). Then d(z,0) = ||z|| defines a norm on X. That is,

(i) ||z]| = 0 if and only if x = 0.
(i) [laz]l = felll2]-
(iii) [lz +yll = d(z +y,0) = d(z, —y) < d(z,0) + d(—y,0).
Example 1.3.2. Let ¢! denote the space of all the sequences of real (or complex) numbers

such that >0°, |z,| < co. Then,

[e.o]

llly = > [l
n=1
defines a norm on ¢'. The pair (¢!,] - ||;) is a normed linear space. For simplicity, we

write ¢ for (¢4 - ||1).

(Hint: Sy |+ ynl < Ty Jwal + X Il < ll2ll + llyll-)

Example 1.3.3. (? denotes the space of all sequences on R (or C) such that 3°° , |z,|? <
00. Define

“ o\
2
lafls = (Z 2] )
n=1

defines a norm on #2.
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. 1 1
(Hint: Zpy |20+ yal® < (Szy [2a])? + (Zna [9a)2)2)

Example 1.3.4. (> = space of all sequences on R (or C) such that sup,cy |z, < oo.
The function

ol = st o
ne
defines a norm on ¢°°.

Example 1.3.5. ¢y = space of all sequences on R (or C) such that lim,,_,, z, = 0 Then
(x,) must be bounded. Hence

|2]| 0o = sup |x,| < oo.
neN

Thus, (co, ||  ||e) 18 @ normed linear space.

Exercise 1.3.6. If v = (21, 29,...,2,) C R" (or C"), then

2]lo0 < [zl < Vnll2ll2 < 7|2l

1.3.2 Geometry of Spheres in (R™, || - ||,)

For 0 < p < o0 and z € R", write

lell, = (3 faal?) "

Then || - ||, is a norm for 1 < p < oo, and for 0 < p < 1, ||z]|} = d,(0, x) with d,(v,y) =
|z — yl[) is a metric. ~ (We see later).

Let S7(0) = {x : d,(0,2) = 1}. Then the following figure can be plotted for different
values of p; 0 < p < o0;p = 0.

Shapes for 0 < p < 1 would look like star-shaped curves (not shown).
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Exercise 1.3.7. If z = (z,,) € ¢!, then z € (*.

(o.9] o
D lzal* < 3 llwlloc|zn] implies [|z[l2 < |zl ]l:-

n=1 n=1

Thus, ¢ C (2 C ¢y C 1,

Exercise 1.3.8. If 1 < p < oo, then for 0%, |,|? < oo, one can define a norm || - ||, on
P via
00 1/p
ol = (3 1el?)
n=1

To prove this, we need some inequalities.

1.3.3 Young’s inequality

Let 1 < p < oo and a,b > 0. Then for % + % =1,ab< %p + %. Proof: Let y = 2P~! then

r=y""! (since p— 1= q_% by % + % =1). Now, it is clear that

Note that equality in (%) holds if and only if a? = b? (or a = b%~'). For this, consider

Poobe 1 1
ab:a——l——, -+ - =1
p q p q

Replace a — a%, b—s bi and 217 = a. Then, we get
a®b' ™ = aa + (1 —a)b
or
t*—at—(1—a)=0 if t=a/b.

Let
fit)=t*—at—(1—a), te(0,00).

Then f(1) =0 and
flt)=at* ' —a=a* ' —1)=0if and only if t = 1.

Since f'(t) < 0if ¢ > 1 and f'(t) > 0 for 0 < ¢ < 1. Hence, f is strictly increasing in
(0,1) and strictly decreasing in (1,00). Thus, t = 1 is the point of absolute maximum of
f. Therefore, f(t) < f(1) = 0, which is another proof of the inequality. On the other
hand, f(t) = 0 if and only if ¢ = 1. This completes the proof.
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1.3.4 H"older’s inequality
Let 1 < p < oo and % + % = 1. Then for € 7 and y € ¢4, it follows that

v-y(=ay+ .. Ty +...) €L
and
-yl < ll@lpllylly -+ (%)
(where é = 0 adopted.) When p =1, ¢ = oo. In this case (%),

o9
lz -yl =D lwaysl <D laal - sup [yil = [[2]h][y]loo-
=1
|73]| ly;1

Now, let 1 < p < oo, then 1 < ¢ < co. Substitute a = a; = TS and b = b; = = Tulle in the
Young’s Inequality. Then

n T n T 149 J}p p ]_ 1
ZH| il Z<| 1P ij|q> S<|| ||per IIprq> _1.1

zlpllylle = = \pllzllp  dllylla pllzllp  qlylli) »  «

That is,
> lwgyil < llzllpllylly,  forall n>1

j=1
Since the left-hand side is an increasing sequence which is bounded above, hence

1z -yl < llzllpllylly-

Notice that if ||z]|, = 1 = ||y[l4, then ||z - y|i < 1, and equality holds if and only if
|yj|p = |‘Tj|q7 vj.
This follows from Young’s equality. For

a?  b?

ab = — + —,
p q

we must have a? = b9.

1.3.5 Minkowski’s inequality
Let 1 <p <oo. Then for z,y € P, x +y € 7, and ||z + y|, < ||z|, + |yll, (*)

Proof. For p =1 or oo, the proof is trivial. Let 1 < p < co. Then

Jo-tly = (bt up) "
< (ium ¥ \yz-w) " 1)

=1
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Since
(il + lyih)? = (sl + wil) (] + [wa)*~
By Holder’s inequality,

Sl + il el < (Sl + 1)) (3 faal) 7
Thus,
S (il + ) < (Sl + wa)?) " (lally + Nyl -
That is )
(S (il +1wh?) " < llally + lylly

From (1), we get

1/p
|z +yll, < (Z(ll’il + Iyz'l)p) < [lzllp + lyllp-
O

Note that as similar to above cases, it can be shown that equality in (%) holds if and only
if
_ ||x||py
1yl
Now, if x,y € (P, then  +y € (. Because a,b > 0, (a + b)? < {2max{a,b}}? that is,
(a4 b)P < 2P(a? 4 b”), and so,

Dol 4P <220 [P+ |yslP) < oo

Thus, ¢ is closed under || - ||,. Hence (¢7, ]| - ||,) is a normed linear space.

Theorem 1.3.9. If f, g € Rla,b], then for ||f|, = ([ ]f|p)1’ we get

; 1 1
(@) N falls < Wflpllglly  where ];—1— 5 =1

(@) f+al < 1Fllo+ gl 1<p<oo

For p = oo,
[ flloe = s [f(t)], where f € Rla,b].
€lab
Then (Rla,bl, | - ||leo) is a normed linear space.

Definition 1.3.10. (Open and Closed balls):
(i) B.(zo) ={y € X : d(xg,y) < r} is called open ball.
(ii) Br(zo) = {y € X : d(xo,y) < r} is called closed ball.
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1.3.6 Open sets in metric spaces

Definition 1.3.11. A set O C (X, d) is said to be open if for all z € O, there exists r > 0
such that B,(z) C O.

Proposition 1.3.12. If{O; :i € I}, I is any index set. Then
(1) User O; is open (arbitrary union of open sets is open,).
(7i) N, O; is open (finite intersection of open sets is open).

Remark. Arbitrary intersection of open sets need not be open.

Example 1.3.13. X =R, u(z,y) = |z —y|. N2, (—l, %) = {0} is not open.

n

Example 1.3.14. Let f : R — R be continuous. Then A = {z € R: f(z) > 0} is open.

Proof. Let x € A implies f(z) > 0. For ¢ = f(z) > 0, there exists 6 > 0 such that for all
y e (—0,0)+xz=(r—3dz+90),

[f(y) = ()] < f(z).

implies 0 < f(y) < 2f(z), Vye€ (x—45z+79).
Hence (z — 0,z + 0) C A implies A is open. ]

Open Sets in R :
A countable union of open intervals is an open set.On the other hand, any open set in
R can be written as a countable union of disjoint open intervals.

Theorem 1.3.15. Let O be an open set in R, then there exists a unique disjoint family
of countably many open intervals I,, such that

o=U1
n=1

Proof. Since O is open, for z € O, there exists an open interval (a,b) such that x €
(a,b) C O. Now, we extract the largest open interval containing = and contained in O.
Let a, = inf{a : (a,z] C O}, and b, = sup{b: [x,b) C O}. Then I, = (a,,b,) will be the
largest open interval containing x and contained in O.
Note that I, = (a,,b,) C O. For this, let a, < 2z < b,, then a, < z — € for small
e >0 = a, +¢€ < z But by definition of infimum, Ja < a, + € and (a,z] C O
= (ay+e€,2] CO.

Similarly, [z,b, —€) CO = (a; +€,b, —€) C O for small e >0 = (a,,b,) C O.
Now, if z,y € O and x # y then either I, N[, =0 or I, = I,,.
If I, N 1, # 0, then I, U I, is an open interval containing x and y.
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Therefore, by maximality of I, for « and I, for y, it follows that I,Ul, C I, — I, C I,
Since y € I, = 1, =1, (" I, is maximal).
Now, O = U,co L. Since I, and I, are disjoint (if x # y), we can assign a distinct rational
to each of them. That is, choose r, € I, and r, € I,. Then r, # r,.
Thus,

{I,:x € O} =% Q (set of rationals) via I, — r,

Hence,
o=U1, (1)
i=1

The representation (1) is unique. Let O = U2, I, = Ure_ .

Then I,, = I, N O = UX_ (I, N Jy). Since {I, N J,, : m € N} is a disjoint family and
I,, is an open interval, I,, C I, N J,,, for some my. But then I,, C J,,,, and given [, is
maximal, = I,, = J,,,. Thus, the representation (1) is unique upto change in order of
union. [

Definition 1.3.16. (Convergent Sequence):
A sequence (z,) € (X, d) is said to be convergent if Ve > 0, 3N € N and zy € X such
that n > N implies d(z,,z) < € if and only if x,, € B.(z), Yn > N.

Definition 1.3.17. (Cauchy Sequence):
A sequence (z,,) € (X, d) is said to be a Cauchy sequence if Ve > 0, 3N € N such that
m,n > N implies d(x,, ) < €

Example 1.3.18. Let X = (0,1) and d(z,y) = |z — y|. Then {1} is a Cauchy sequence

because

1 1

—— —| =+ 0asn,m— oo.
m

|Tn — 2| =
n

But limz,, = 0 ¢ X. Hence not convergent.
However, every convergent sequence is a Cauchy sequence.

Definition 1.3.19. A set A C (X,d) is said to be bounded if 3z, € X and M > 0 such
that d(a,z¢) < M, VYa € A if and only if a € By(xg),Va € A. that is, A is bounded if
and only if A is contained in a ball.

Example 1.3.20. The set {(x,y) : y = sin (%) ;o # 0} U ({0} x [-1,1]) is not bounded,
as R x {0} is contained in it.

Proposition 1.3.21. Every Cauchy sequence is bounded.
Proof. Since (z,,) C (X,d) is a Cauchy sequence, for e = 1, 3N € N such that
d(xpm,x,) <1, VYm,n > N.

So d(zp,zn) < 1, VYn > N. Let M = max{l,d(x;,xy) : ¢ = 1,2,...,N — 1}. Then
d(z,,zn) < M,Vn > 1 implies z,, € Bys(z,,). O
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But converse need not be true. For (R,u), v = usual metric. =, = {-1,1,—-1,1,...}
is bounded but not Cauchy sequence.

Proposition 1.3.22. Let (z,,) be a Cauchy sequence in (X,d). If (z,,) is a subsequence
which converges to x. Then x, — x.

Proof. For € > 0, there exists N; € N such that
€
ATy, Ty) < 2 VYn,m > Nj.
Also, for the same € > 0, there exists Ny € N such that
€
d(zp,, ) < 2 Vi > Ns.

Let N = max{N;, No}. Then

d(Tp, Tpm) < g and  d(xp,,r) < g for all n,m,n; > N.
implies d(zy, , Tm) < %, Vng,m> N.
Thus,
d(z,zy) < d(z,zp,) + d(x),,, Ty) <e forallm > N.
Hence, z,, — x. ]

Remark. If X = (0,1) and d(z,y) = |z — y|. Then z, = = is a Cauchy sequence, but it
has no convergent subsequence.

1.3.7 Closed sets in metric spaces

Definition 1.3.23. A set F' C (X,d) is said to be closed if F*° is open. that is, for all
x € F¢ =X\ F, 3¢ > 0 such that B.(x) C F*°.
On the other hand, if for each € > 0, B.(z) N F # () implies = € F.

Example 1.3.24. The set A = {(z,y) : y =sin 1, x # 0} is neither open nor closed set
in R%. If z,, = % # 0, (1,,yn) = (-=,0) € A, but lim,, (7, yn) = (0,0) ¢ A Since any

nm’

ball B;(%, 0) € A implies A is not open in R2.

Theorem 1.3.25. Let (X,d) be a metric space and F C X. Then the following are
equivalent (F.A.E):

1. F is a closed set (F° open).

2. Ve >0, B(x) N F # 0 implies x € F.
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3. ¥ sequence (x,) € F such that x,, — x implies v € F.

Proof. (1) implies (2): Suppose F is closed. Claim: B.(x) N F # (), Ve > 0 implies = €
F.
Notice that if = ¢ F implies z € F° and F* is open implies Jeg > 0 such that

Be,(z) C F° implies B, (x) N F = 0,

which is a contradiction.
(2) implies (3): Let (x,) C F and x, — z. Then for each ¢ > 0, x, € B.(x) for all
n > ng.

implies x,, € B(x) N F # (), Ve > 0 implies z € F

(8) implies (1): Claim: F° is open. Suppose F is not open. Then there exists © € F*
such that for each n € N, there will be z,, € F and d(z,,z) < L. By (3), z € F, which is
a contradiction. O

Example 1.3.26. Let f : R — R be continuous. Then A = {z : f(z) = 0} is closed.
Since z,, € A and x, — z. So f(z,) =0, V¥n > 1implies lim f(x,) = 0 implies f(z) =
0.

1.3.8 Interior points and interior of a set

Let A C X. Then interior(A) or Int(A) or A° is the largest open set contained in A. That
is,

A°=|J{O C X : O open, O C A}

=|J{Bc(z) C A: for x € A and some € > 0}= union of all open balls contained in A.

1.3.9 Closure and limit points

Let A C (X,d). The closure of A or cl(A) or A is the smallest closed set containing A.
That is,
A=({F CX:F closed and A C F}

= {z € X : 3o, € A with z, — z}

= collection of limits of all convergent sequences in A (limit need not be in the set A).

Example 1.3.27. A = {(n, L)ine N}. Then closure of A in (R,u)is A= Aand A° = ()
(Why?).

Example 1.3.28. 1. A= {(z,y) : |z| < 1,|y| < 1}. Then
A={(zy):fo| < Lyl <1}
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2. A={(x,y) : y =sin (i) ,x # 0}. Then
A={(,y):y=sin(L),2#0}U ({0} x [-1,1]).

Example 1.3.29. Let ¢oy = space of all sequences having finitely many non-zero terms.
coo = {r = (1,22, ...,7,,0,0,...) : x; € R}
lzlloo = max a;| < oo.

implies cog C ¢ (proper subspace).

Let
X" = (1,1,...,1,0,0,...) € coo-
2 n
Let . ) .
X:<1,2,...,n,n+1,...) e .
then

. 1 1
| X — X"||oo = sup

= — 0.

but X ¢ cgo. Hence cyg is not a closed subspace of £>°. In addition ¢y is not open in £*°.
For this, let € > 0 be arbitrary and consider the sequence y = (;, e ) € (. Then
|ylleo = § <€, 50y € B(0), but y & coo. Therefore, B.(0) Z coo for any e > 0.
For 1 <p < 00, cgp C P and ¢ is neither closed nor open in ¢P. For this, let

P \ /P
xn:(an) , 1 <p<oo,

and consider = = (x1,x2,...) € P. Then = ¢ ¢oy and

2l =Y leab =Y sy =5

n=1 n=1
so [|z]|, = 577 < €. Hence x € B,(0), and therefore B.(0) € cqo for any € > 0. Conse-
quently, cqp is not open in /7.
To see that cgg is not closed in 7, let X" = (z1,29,...,2,,0,0,...) € cgo. Then X" — x
in /7, since

X" —z|b= ) W%O as n — 00.

k=n+1

But = ¢ cgp.

Proposition 1.3.30. Let A C (X,d). Then x € A if and only if B.(x) N A # &, for all
e > 0.
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Proof. Let © € A. Suppose J¢y > 0 such that B, (z) N A = @. Then A C (B (z))¢,
a closed set. By definition of A, A is the smallest closed set containing A. Hence,
A C (B (). Since x € A, but x ¢ (B, (x))¢, this is a contradiction.

Conversely, suppose B.(x) N A # & for all € > 0. By the previous result, z € A (since
A is closed). O

Proposition 1.3.31. z € A if and only if there exists a sequence (x,) with x, € A such
that x,, — .

Proof. If x € A, then for all n € N, By ,(z) N A # @. So, 3z, € By,(x) N A. Thus,
1
d(x,,x) < —,Vn € N implies z,, — x.
n

Conversely, if there exists z,, € A with x,, — x. Then for ¢ > 0, Ing € N such that
d(z,,x) < € for all n > ng, implies z, € B(r) N A # & for all ¢ > 0. Thus z € A (by
previous result). O

1.4 Complete metric spaces

We have seen that there are Cauchy sequences whose limits need not necessarily belong
to the space.

For example, the sequence % € ((0,1),u) under the usual metric, is a Cauchy sequence
but the limit £ — 0 ¢ (0,1).

It is always possible to enlarge the space so that limits of all Cauchy sequences can
be accommodated. This process is known as the completion of metric spaces, we shall
see later. However, there are many spaces which do accommodate limits of their Cauchy
sequences.

Definition 1.4.1. A metric space (X, d) is called complete if every Cauchy sequence in
X has its limit in X.

Example 1.4.2. (R,u) is a complete space.

Let (z,) be a Cauchy sequence in R. Then it is bounded. And by the Bolzano—Weierstrass
theorem, there exists a subsequence z,, — x € R. For any ¢ > 0, there exists a natural
number kg such that

|z, — x| <€ forall k> kg (1)

But the sequence (z,,) is Cauchy, so for all € > 0, there exists ng € N such that |z, —z,,| < €
for all n,m > ng. Let m > ng and m > ny,. Then

|zp, — 2y, | < € for any n > ng and k > k. (2)
From (1) and (2), it follows that:

|zp — 2| <2y — X | + |20, — 2] < 26
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for n > ng and ng > nyg,. Thus, for € > 0, there exists ny € N such that
n>ny = |z, —z| <e
Notice that the above discussion can be used to prove the following result.

Proposition 1.4.3. Let (x,,) be a Cauchy sequence in a metric space (X,d). If (x,) has
a convergent subsequence x,, — x, then x, — x. (Proof is similar to the above.)

Example 1.4.4. (R, d) with d(z,y) = |tan™!(z) — tan"!(y)| is incomplete.

(Hint: x, = tan § (niﬂ) is Cauchy, but not converging to a point in R.

Example 1.4.5. Every discrete metric space is complete.

1 ifx#y

0 ifz=y

Suppose (z,) C X is Cauchy. Then for € > 0, 3N € N such that d(z,,x,,) < € for all
n,m > N.

Let X # 0, and do(z,y) =

0 if0<e<l1

0 or 1 ife>1.
But if dy(z,,, z,,,) = 1 for only finitely many n,m > N (for some € > 1), then

Now, do(zp, xm) =

lim do(zp, ) =1#0 (Why?)
Thus, for all € > 0, AN’ € N such that d(x,,x,,) = 0, for all n,m > N'.
that is, (z,,) = (1, 29, ..., 2y, x,2,...) = T.
(Thus, every Cauchy sequence in (X, dy) is eventually constant.)

Example 1.4.6. (R", || - ||,) is complete for 1 < p < oo.
Let 1 <p < oo, and 2% = (z},...,2F) be a Cauchy sequence in (R™, | - ||,). Then for

rrn

€ > 0, there exists kg € N such that for all k,1 > ko,

1/p
n
l2* — ||, = (Z |z} — xél”) <e
j=1

= [oh —al| < e forall k1> ko

= (xf) is a Cauchy sequence in (R, u).
Hence m;“ — x; for all j. Then for € > 0, there exists m; € N such that & > m; =—
2% — 2] < e. Let mg = max;{m;}. Then, for x = (21,..., ),
2% — 2|, < € for k > my.

Notice that the case p = oo is similar. We skip its proof here.
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Example 1.4.7. Let 1 <p < co. Then (¢, | - ||,) is complete.

Let 1 < p < oo, and let 2% = (2}, 25,...) be a Cauchy sequence in (¢7,] - ||,). Then

for € > 0, there exists ng € N such that Vk,l > ny = |l2* —2!||, < ¢
n
= Z ]a:f — x;]p <€ (1)
=1

For each fixed n, this reduces to (R, || - [|,), which we know is complete. Hence x;“ — Tj;
j=1,2,...,n. Thus, letting k — oo in (1), it follows that

Yolah =P <, VI>mng (2)
=1

But the left-hand side of (2) is an increasing sequence and bounded above, hence, letting

n — 00, we get
o0

Z |$é —z;|P < €
j=1

|2t — x|, <€, VI>mng
where x = (1, 29,...,Z,,...). Notice that
[zllp < [l = 2", + ", < e+ [l2™[, < 0o = z €.
Proposition 1.4.8. Every closed subset of a complete metric space is complete.

Proof. Let F be a closed subset of a complete metric space (X,d). Then (z,) C F is a
Cauchy sequence, it follows that (z,) is a Cauchy sequence in X. Hence z, — = € X.
But F'is closed, it implies that = € F'.

In fact, if (X,d) is complete, then F' is closed if and only if F' is complete. (Hint: it
follows easily.) O

Example 1.4.9. Show that (cy, || - ||oo) is a proper closed subspace of (£, | - ||s0)-

We know that ¢y C (. Now, let 2% = (af, ... ,x?, ...) be a sequence in ¢y such

that ¥ — x = (21,...,;,...). That is, for every ¢ > 0, there exists ky € N such that
Vk > ky = ||2* — 2]l < € which implies
|9[;§C — x| <e foreach j > land Vk > k. (1)
Since x;“ €c = limj_, x? = 0 for each k. For € > 0, there exists jo € N such that
|xf] <e Vji>jo and k> k. (2)
It follows from (1) and (2) that
;| < Jafo — 2] + |20 < 2¢ VG >,

ie., |z;| < 2efor all j > Jy, which means lim;_,. x; = 0. Hence ¢ is a closed subspace of
(. Thus, ¢y is complete in its own right.
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Example 1.4.10. The space (C[a,b], | - ||oo) is @ complete normed linear space.
Let (f,) be a Cauchy sequence in (Cla,b], || - ||oo). Then for € > 0, there exists ny € N
such that Yn,m > ny = ||f — fmllec < € which implies

|[fu(t) — fao ()] < € Vn > mng,Vt € |a,b. (1)

So (fn(t)) is a Cauchy sequence in (R, u) for each fixed ¢ € [a,b]. Hence f,(t) — f(t).
Letting n — oo in (1), we get |f(t) — fu,(t)] < € Vt € [a,b]. (Notice that ng is free of
choice of t). Since f,, is continuous, for each fixed ¢ and € > 0, there exists § > 0 such
that |s —t| < 0 implies | fn,(s) — fn,(t)| < €. Hence,

[f(s) = FOI <1 (s) = fro(8)] + [fno(8) = fro ()] + [ fo () — F ()]

< 3e€

So f is continuous on [a, b].

However, the space (Cla,b], || - ||1) is not complete. For this, we consider the following:
Consider
nt 0<t<i
n(t) = - "
- fr 021

It is easy to see that for % < %,

1/m l/n
U= dull= ([ 4[4 ) 1000 = st

1/m 1/n 1
:/ (mt —nt)dt + [ (1 —nt)dt+ [ (1—1)dt
0 1/m 1/n
171 1
:<—> —0asn<m— oo
2\m n

Thus (f,) is a Cauchy sequence in (C[0, 1], - ||1). But the pointwise limit:

f(t) = lim f,(t) =

n—oo

1 0<t<1
0 t=0

(Hint: f,(0) =0 and f,(1) =1 for all n, so f(0) =0 and f(1) =1. For 0 <ty < 1, we
can find large n such that 0 < 1 < ¢, < 1. Hence f,(ty) =1 for large n. Thus f(t,) = 1.)
However, f is not continuous, hence (C[0, 1], || - ||1) is not complete.

1.4.1 Dense subsets and separability

A set A C (X,d) is said to be dense in X if A = X. (that is, Vo € X, 3z, € A such that
Ty, = x,0or Vo € X, B(x)NA# T, Ve >0.)
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Example 1.4.11. Q = R with usual metric u(z,y) = |z — y|.
Let z € R, 2 = 2]+, 0 < o < 1. But @ = 0.xq22... with x; € {0,1,2,...,9}.

implies z = wo + 7§ + & + - 00. Let 1, = 1o+ {{ + -+ + {2%. Then z,, € Q, and

Thus z, € Q and z, — = € R.

Example 1.4.12. If 1 < p < oo, then ¢5g = 7.
Let x € 7, x = (x1,29,...,Tp,...). Write X" = (21,29,...,2,,0,0,...). Then X" €
Coo, Vn > 1. Now,

1
S P
|z — X", = (Z |$k+1|p> —0asn— oo
k=n

Thus, X" — x.

Example 1.4.13. ¢y = ¢g. Let z € ¢g. Then x = (21,29, ...,2,,...) and lim,_,o, z, = 0.
For € > 0, 3N € N such that |z,| < §, Vn > N ---(1).
Write X" = (21, x9,...,%,,0,0,...), n > N. Then X" € ¢y and

€

[z = X"[[oc = sup |zn| < 5, VR =N (by (1))
n>N 2

Thus, X — .

Remark: oo = co C €>°. That is, cgg is not dense in £*°.

1.4.2 Continuous maps between metric spaces

A function f: (X,d) — (R,u) is said to be continuous at xzy € X if for all € > 0, there
exist 6 > 0 such that d(zo,y) < ¢ implies |f(z0) — f(y)] < €.

implies £(Bs(x0)) € (f(x0) — &, f(x0) +¢)

Theorem 1.4.14. Let f : (X,d) — (R,u) or (R, usual metric). Then the following are
equivalent:

(i) f is continuous on X (with e — 0 definition).
(i) For any sequence x,, € X such that x, — x implies f(z,) — f(x).
(iii) f~1(O) is open in (X, d), for every open set O C R.

(iv) f~YF) is closed in (X,d), for every closed set F C R.
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(Proof is similar as to f: R — R when d — u, u(z,y) — d(z,y).)
Example 1.4.15. For z,y, z € (X, d), we get

|d(x,y) —d(z,z)| <d(y,z) (by triangle inequality)
Thus, for f(y) = d(z0, )

1f(y) = f(z)] <d(y,2) =0 as y— =

Hence, f is continuous on (X, d) to (R, u).

1.4.3 Uniform continuity

Definition 1.4.16. A function f : A(C (X,d)) — R is said to be uniformly continuous
on A if for each € > 0, there exists ¢ > 0 such that for all z,y € A,

d(z,y) <6 = [f(z) = fly)] <e

Notice that § is free of choice of locations of points x,y € A; it only depends on their
separation.

Example 1.4.17. For zy € X, let f(z) = d(z, o). Then f is uniformly continuous on X.
(Hint: d(x,z0) < d(x,y) + d(y,xo) f(z) — f(y) < d(x,y).) Similarly, by replacing x
with y, it follows.

Example 1.4.18. For z € X, A C X, define d(z, A) = inf{d(z,a) : a € A}, which is
called the distance of A from x, and is uniformly continuous as a function of z. (Hint:
d(z,a) <d(z,y) +d(y,a).) Thus, d(z, A) < d(z,y) + d(y, A) and so,

[f(x) = fy)l < d(z,y) (x <)

Example 1.4.19. The function f : (0,1) — R given by f(z) =  is continuous on (0,1),
but not uniformly continuous.

Let zo € (0,1). Then for € > 0, there exists n € N such that (zo — <, 29+ <) C (0,1).
Suppose %—i’ < efory € (wo— 5,00+ £) =t Iy, Then |z — y| < exgy. Let
0 = minyer, {exoy} = exo(wo —€¢/n) > 0. If |79 — y| < 0. Then

< €.

1 1|:|x0—y\<5<€3€0($0—6/”)

Ty Loy Toy ~ Loy

Hence, f is continuous at each xg € (0, 1).
f is not uniformly continuous: Let € = %, T = %, y = #1’ n € N. Then for any 6 > 0,
there exists ng € N such that

:n n+1
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but )
Fa) — FWl =14 5

Hence, f is not uniformly continuous on (0,1). From the above argument, we can prove
the following result.

Theorem 1.4.20. Let f : A(C (X,d)) — R. Then f is uniformly continuous on A if and
only if for every pair of sequences x,,y, € A with d(x,,y,) — 0, implies | f(z,)— f(yn)| —
0.

Proof. Suppose f is uniformly continuous on A. Then for any € > 0, there exists § > 0
such that

d(z,y) <6 = |f(z) = fy)l <e (1)

Let x,,y, € A such that d(z,,y,) — 0. Then for 6 > 0, there exists ng € N such that for
all n > ny,

d(n, yn) <0 = [f(za) = fya)| <€ (from (1)),

That is, if d(z,,y,) — 0, then |f(x,) — f(yn)| — 0. Conversely, suppose that f is not
uniformly continuous. Then there exists ¢y > 0 such that for every § > 0 there exist
z,y € A with d(z,y) < 6 but |f(x) — f(y)| > €. Now, let 6 = % for n € N. Then there
exist x,,y, € A such that

1
d(xp,yn) < - ,Vn e N, but |[f(z,) — f(yn)| > €o.

That is, d(zn,yn) — 0 but lim|f(x,) — f(yn)| > €0, is a contradiction. Hence, f is
uniformly continuous. [

Exercise 1.4.21. Show that a uniformly continuous function on a metric space (X, d)
sends Cauchy sequences to Cauchy sequences. (Hint: If f : (X,d) — R is uniformly
continuous, so for d(z,, z,) - 0 = |f(z,) — f(zm)| — 0.)

Theorem 1.4.22. Let [ : [a,b] — R be a continuous function. Then f is uniformly
coOntinuous.

Proof. On contrary, suppose f is not uniformly continuous on [a,b]. Then there exists

€0 > 0 such that for every ¢ > 0, there exist x,y € [a, b] with |[x—y| < 0 but |f(z)—f(y)| >
1

€. For § = L there exist z,,,y, € [a,b] such that |z, — y,| < L but |f(z,) — f(yn)| > €o.
By the Bolzano—-Weierstrass theorem, z,,y, have convergent subsequences, say x,, —
and y,, — y. Now,
1
o=yl = Hm e, = yn,| < Jim 22 =0,
so x = y. Since f is continuous, f(x,,)—f(yn,) — f(z)—f(y) =0, but | f(zn,)— f (Yn, )]

>
€g, contradiction. O



1.4. COMPLETE METRIC SPACES 27

Example 1.4.23. Let f : R — R be continuous such that lim ;. f(2) = 0. Then f is
uniformly continuous.

Proof. For € > 0, there exists [—a,a| such that |f(x)| < €/2 if © € [—a,a]®. Hence, if
x,y € [—a,al® then

f@ - fWl<z+5=¢ @

Since f is uniformly continuous on [—a,a|. For € > 0, there exists § > 0 such that

[t -yl <d = |flz) - fly)l<e (2

Since (1) holds true for z,y with |z — y| < §. It follows that for € > 0, we get § > 0
such that |z —y| <6 = |f(xz) — f(y)| < € (for any z,y € R). Hence, f is uniformly
continuous on R. O

Notice that if f € Cy(R), that is f is continuous and lim;|—, f(2) = 0 and hence f is
uniformly continuous. But if f is continuous and bounded, then f need not be uniformly
continuous on R.

Example 1.4.24. f(z) = sinz?, which is continuous and bounded but not uniformly
continuous on R. (Hint: Take 22 = nm and y* = nw + %71’)

Example 1.4.25. Let f : R — R be a bounded continuous function. If f is monotone,
then f is uniformly continuous on R. Since f is bounded, let inf f(z) = L, sup f(x) =
M. For € > 0, there exist xg,yo € R such that f(xg) < L+ e and f(yo) > M —e.

If f is monotone increasing, then for =,y € [zg, y0]° and z,y > o

fly) = f(@) <M = flyo) <M — (M —¢) =e.
Similarly, if z,y < zo then

fly) = fle) < L+e—flrg) <L+e—-L=c¢
Thus, for x,y € [z0, 0], we get [f(z) — f(y)| <& (1).

Since f is continuous on [xq, o], f is uniformly continuous on [zg,yo]. For any & > 0,
there exists 9 > 0 such that

2,y € [vo,90), [v =yl <6 = |f(z) = fly) <e  (2)

Notice that (1) also holds for x,y € [z¢, yo]® with |z — y| < 0. Thus, we get single § > 0
such that

[r—yl <0 = [f(z) - fly)l <e
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Exercise 1.4.26. If f : R — R is a bounded continuous function then for f monotone,
it follows that

lim f(x) = finite, lim f(z) = finite.

T——00 T—-+00

(Hint: For any sequence x, — oo, f(x,) is bounded and lim,, ., f(x,) = sup,, f(z,), for
f is increasing.)

Example 1.4.27. Let f : (a,b] — R and f : (b,¢) — R be uniformly continuous. Then
f : (a,¢) — R is uniformly continuous.

Proof. Since f is uniformly continuous on (a, b] and (b, ¢), for any £ > 0, there exists § > 0
such that if 2,y € (a,b] or z,y € (b,¢) with |z — y| < 9, then |f(z) — f(y)| < e. Now, let
x,y € (a,c), with |x —y| <. Then |z — b| < d and |y — b| < 0. Hence,

[f(@) = f(y)l < |f(@) = FO)+[f(0) = fy)] < 2.

Thus, f is uniformly continuous on (a, c). O

We see that a uniformly continuous function can be extended uniformly to the closure of
the set.

Theorem 1.4.28. Let f : A(C R) — R be uniformly continuous on A. Then f can be
extended uniformly to A, and this extension is unique.

Proof. Let x € A. Then there exists z, € A such that x, — x. Now, f(z,) is a
bounded sequence in R. Hence, by Bolzano-Weierstrass theorem, f(x,) has a convergent
subsequence. Without loss of generality we can assume that f(x,) is convergent. Let
f(x) = lim f(z,,) (.- lim f(x,) exists ). Notice that f is well defined, because f is uniformly
continuous on A. If z,,y, — =, then z, —y, - 0 = f(z,) — f(yn) — 0O ie.
lim f(z,) = lim f(y,) (. lim f(z,) and lim f(y,)) both exist). Hence f : A — R is well
defined. Suppose z,y € A and they are close enough to each other. Then there exist
ZTn,Yn € A such that x,, — x and y,, — y. Hence,

f(x) = Fy) = J(@) = flan) + flen) = o) + Flw) = F0)
= (@) = fW)| < |F(@) = F@a)| + | F(@a) = F@a)l + £ (ya) — F ()]

Notice that |f(z) — f(zn)| < € and |f(y) — f(yn)| < € for n > ng (say). Let |z —y| <
(small enough). Then there exists n’ € N such that |z, — y,| < § for n > n’. Since f
is uniformly continuous on A, it follows that |f(z,) — f(yn)| < € for n > n’. Thus for
sufficiently large n > max(ng, n').

|f(z) — f(y)] <3¢, where |z —y| <.

Hence, f is uniformly continuous on A.
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This extension of f is unique: If there exists § : A — R which is uniformly continuous
and § = f on A, then for x € A, there is a sequence x, € A such that x,, — . Hence,

fle) = lim f(z,) = lim g(z,) = gl2)
(". g is uniformly continuous extension). O

Next, we shall see that uniformly continuous function grows slower than a straight line.

Theorem 1.4.29. Let f : R — R be uniformly continuous,then there exist constants
A, B >0 such that |f(x)| < Alz| + B for all z € R.

Proof. For any € > 0, there exists 6 > 0 such that |z — y| < § implies |f(z) — f(y)| < 1.
We divide the proof into two parts: one is near ”"0” and other is away from ”0”. Let a > 0.
Then |f(x)] < A < oo for x € [—a,a]. Now, consider f : [a,00) — R.Then for z € [a, c0),
we can find n € N such that « € [a +nd, a + (n + 1)d]. Then,

f(x) = fa) = f(z) = fla+nd) + fla+nd) - f(a)

= f(z) — f(a+nd) + Z (a+38) — fla+ (j +1)d)]

Jj=

= [f(@)] <1T+n+]f(a)l

1 1 1\ 1
L|f0) el een sl WL W@l g
x a+nd no n/) o no
Notice that B is independent of n, hence B is independent of x. That is, |f(z)| < B|x| if
x > a. Hence, we can summarize that |f(z)| < Blz|+ A  forall z € R. O

Example 1.4.30. Notice that f(z) = 22 is not uniformly continuous on R, as it cannot
satisfies the conclusion of the above theorem.

Example 1.4.31. Let f : R — R be differentiable and its derivative is bounded. Then f
is uniformly continuous on R. For any x,y € R, by the Mean Value Theorem,

[f (@) = fW)l = [f'(O)(z —y)| < M|z —y|

where ¢ is between x and y, and M is an upper bound for |f’(t)|. However, f(x) = \/z
for z € (0,00) is uniformly continuous, but its derivative is f'(z) = ﬁ, is not bounded.

Example 1.4.32. Let f : (X,d) — R be uniformly continuous, then f sends Cauchy
sequence in X to Cauchy sequence in R.

Let (x,) be a Cauchy sequence in (X, d). Since f is uniformly continuous, for £ > 0,
there exists d > 0 such that d(x,y) < § implies |f(x) — f(y)| < e. For § > 0, there exists
N € N such that d(z,, z,,) < d for all n,m > N, implies |f(z,) — f(zn)| <&, Vn,m >
N. Therefore, (f(x,)) is a Cauchy sequence in R.



30 CHAPTER 1. METRIC AND NORMED LINEAR SPACES

1.4.4 Compactness in metric spaces

Definition 1.4.33. Let (X, d) be a metric space. A subset K C X is called compact if
every open cover of K admits a finite subcover.

Theorem 1.4.34 (Sequential compactness). If (X, d) is a metric space and K C X, then
K is compact if and only if every sequence in K has a convergent subsequence with limit
in K.

Remark 1.4.35. In R" equipped with the Euclidean metric, the Heine-Borel theorem
asserts that a set is compact if and only if it is closed and bounded.

Theorem 1.4.36. Every compact metric space is complete. Moreover, if f : X — Y is
continuous, then f(K) is compact whenever K is compact.

Proof. 1If (z,,) is a Cauchy sequence in a compact metric space, then (z,) has a convergent
subsequence (z,,) — x. The Cauchy property forces x,, — x, proving completeness. The
continuous image statement follows from the open-cover definition. m

1.4.5 The contraction mapping principle

Fixed point searching is an idea to solve equation of the form ¢(x) = x. This helps
solving a range of problems, including approximation theory, differential equations etc.
Fixed points can be obtained via iterations, i.e. if the function "shrinks nicely", then we
get fixed points via iteration. That is, if 2 is a point in the space X, then zq — ¢!(xy) —
©*(zg) — -+ where " denotes n-times composition of . If the sequence (¢"(z¢)) is
convergent and ¢ is continuous, then ¢™(z¢) — x and thus ¢(z) = p(lim, .« ¢"(xg)) = x.
However, if the space is complete, we only need to verify ¢™(z¢) to be a Cauchy sequence.
Nicely shrinking function, we mean here with contraction mapping.

Definition 1.4.37. A function ¢ : (X,d) — (X, d) is called contraction if there exists
0 < o < 1 such that

de(z),o(y)) < ad(z,y), VYr,ye X.

Theorem 1.4.38. Let (X,d) be a complete metric space. If p : (X,d) — (X,d) is a
contraction, then @ has a unique fixed point.

Proof. Let 0 < o < 1 be such that

d(p(z),0(y)) < ad(z,y), Vr,yeX.
For a point 2y € X, let
900(930) = Xo, 901(3?0) = ¢(zg) etc.

Then
(" (o), " (x0)) < d(@" (o), 9" (o)) < "d(p(0), To)-
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We show that ¢"(z) is a Cauchy sequence. Let m > n. Then

(" (o), ™ (20)) < (@™ 4 -+ 4+ &™) d(p(0), 7o)

n

S ad(go(xo),:vo) (F0<a<l)

—0 asn— oo.

Since (X, d) is complete, " (zg) — = € X (say).

— pla) = (Jim ¢ (x0)) = lim "+ (w0)

n—o0 n—oo
= p(z) ==
If 3y € X such that ¢(y) = y, then

d(z,y) = d(p(z),¢(y)) < ad(z,y)
— o=y (0<a<l)
This establishes that ¢ has unique fixed point. O

Remark: If Q C R"™ is open, then any contraction mapping f : 2 — €2 can have at
most one fixed point.
Notice that completeness property of the space is a sufficient condition for existence
of fixed point. For example,
¢ :(0,00) — (0, 00)
1

gp(x)zi(x—kg), a>0

satisfies p(v/a) = /a.

Notice that ¢ above is not a contraction mapping, since

1 a
— — 1=z —
p(z) = el =5 1= e =yl
because the function |1 — xiy| is not bounded near zero.

Example 1.4.39. ¢ : (0,27) — (0,27), p(x) = sin 3.
1
lo(z) —(y)] < §|m —y| (By Mean Value Theorem)

Thus, ¢ is a contraction mapping, but ¢ has no fixed point in (0, 27).

Exercise 1.4.40. If (X, d) is a complete metric space and f : X — X is such that f* is
a contraction, then show that f has a unique fixed point. (Hint: do for k = 2, use the
fact that f* cannot have two fixed points. If f2(x) = z and yy = f(xo)(say), implies
that f(yo0) = Yo = Yo = o).
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Exercise 1.4.41. Let T': C[0,1] — C[0, 1] be defined by

Show that T2 is a contraction but 7 is not a contraction.

Notice that the above fact in these example is also clear from the fact that in the
convergence of ©™(z), we can ignore finitely many steps.
Now, we shall try to understand the existence and uniqueness of the initial value problem:

{y/ = f(l',y)
y(0) = yo

(*)

with the help of fixed point theorem.
Suppose f is a continuous function in some rectangle containing the interval (0, o) in its
interior, and f is Lipschitz in the second variable, i.e.,

|f(m,y1) - f(x,y2)| < K|y1 - y2|7

where K is a fixed constant. Then the equation (*) has a unique solution in some neigh-
borhood of = 0. Notice that solving (*) is equivalent to solve

| v = [ ey

y(@) =yo+ [ F(Ey®)a (4

That is, we want y(t) such that (**) holds. In other words, we want to get fixed point for
the map ¢ — F(p), where

Pl)@) =+ [ f(tp(t)dr,

with ¢ € C[—4, ] for some § > 0, which we get very soon. Now,

Fp)(@) ~ F)@)| < [ 1f(t.o(t) — F(t, 6(t)]dt,

0
<K [ lo(t) - (]
< K25l = Ul

Thus, F : C[—6,6] — C[—4,6] is a contraction as long as 2K§ < 1, i.e. if § < 5. Hence

F has a unique fixed point in C[— 5%, 51]. That is, (*) has a unique solution in |z| < 5.
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Example 1.4.42. Consider y' = 2z(1 + y), y(0) = 0. Then

o(z) = /0 "2t + p(t))dt.

With the initial guess ¢° = 0, we get

ol (z) = / 24(1 + 0) dt = 22,
0

P2 (z) = / 2(1 + £2) dt = 2% + =,
0

Thus, by induction,

©"(z) = P e 1, (*)
1 K

and ¢(z) = ¢* — 1 is a solution, which is same as method of separation of variables.
Notice that the series (*) converges uniformly on every interval [—a, a], or on any interval
[a,b]. On the other hand, ¢'(z) = 2z(1 + ¢(z)) has unique solution in neighborhood of
any point xg, i.e., [xg — d,x9 + d] with § < i. (Hint: Lipschitz constant = 2.)

1.5 Uniform convergence

1.5.1 Uniform convergence of sequences of functions

Notice that in the previous exercises, we have seen that (C([0,1]),] - ||) is complete.
That is, if || f, — finlloo = 0, then there exists f € C([0, 1]) such that ||f, — f|lcc — 0. But
then,

|fn(t)_f(t)| < ||fn_f||oo_>07 vt e [071]7
i.e., fu(t) = f(t) for each t € [0,1]. We say that f,, — f uniformly if

Slt1p|fn(t) — f(®)] —0.

But there are sequence of functions which converge pointwise but not uniformly.

Example 1.5.1. Let f,(t) =t", t € [0,1]. Then,

f(t) = lim f,(t) =

n—oo

0 0<t«1
1 t=1

So,
Slt1p|fn(t) —f@)=14A0.
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Example 1.5.2. Let f, : R — R be given by
fut)=e¢™, neN
Then,
1 t=0
t) = lim f,(t) =
£(8) = Jim £u(0) {O 0

Notice that for t = 0, |f,(0) — f(0)] =1 -1 =0<e¢ VneNIf |tz >0, t2 > 0. Then
for |fu(to) — 0] < €, we get

log%
3

2
e < e = n>

log L
;ﬂ +1. Then, |f,(fo) — f(to)| < € for n > nq

Notice that ny = ng(e, tp) and ng is large for |tg| close to zero. Thus, ng cannot be free
from ty. Therefore, f, — f pointwise but not uniformly. Also,

I fo = flloo =supe™ =140
teR

Let ng =

If f,(t) =e ™ for t € [1,00), then

sup |fn(t) — O| —e " 5 () — e—nt [lllnif.) 0
' ,00

Exercise 1.5.3. Let f,,, f : A(CR) — R be such that f,, — f uniformly on A. Then for
|fu(®)] < M, (ie. f,’s are bounded), that implies f is bounded.
(Hint: |f(E)] < |fao() = FO] + | fao (D) < €4 My, <00 V€ A)

We shall see later that uniform convergent sequences is a good carrier for many un-
derline properties.

Theorem 1.5.4. Let f,f, : A(C R) — R be such that f, — f uniformly. Then f
is continuous if f,’s are continuous (i.e. the uniform limit of a sequence of continuous
functions is continuous).

Proof. For € > 0, there exists ny € N such that sup,c 4 |fn, (t) — f(£)| < € Thus,
|fro(t) — f(t)] <€, Ve A

Since f,, is continuous on A, for fixed ¢ and for € > 0, there exists > 0 such that if
[t —s] <6 = |fuo(t) = fno(s)| < €. Thus,

£ (s) = FOI <1 (s) = fro (8] + [fno(5) = Sro O] + |frg (8) = F(2)] < 3e
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Theorem 1.5.5. Let R[a, b] denote the space of all Riemann integrable functions on |a, b].
Let f,, f € Rla,b] and f, — f uniformly. Then,

[r[r

. b b .
Jim [ f= [ dm

that is,

Proof.

b b
L(n—fﬁgan—ﬂsnn—ﬂuw—a%+o
[]

Corollary 1.5.6. If f,, € Rla,b] such that S,, = f1 + fo+ ...+ fn converges uniformly to

S, then - .
L;n:;én

(Obvious from the previous result).

Theorem 1.5.7. Let f,, € C'{a,b] be such that f, — g uniformly. If there exists xo € [a, b
such that f,(xo) converges, then there exists f € Clla,b] such that f, — f uniformly and

=g

Proof. Since f] — g uniformly and f,, is continuous, ¢g will be continuous. Define
fila,b] =R by f(zo) = lim f, (o)

and

_J fxo) + [ 9(8) dt,  if x>z
ﬂﬂ_{ﬂ%%ﬁ?ﬂﬂﬁ,ﬁm<m

Then f'(z) = g(x) for every € [a,b]. Hence, f € C'[a,b]. Now,

fa(@) = fin(2) = fulz) = fin(2) = (fu(20) = fin(0)) + (fu(20) — fin(70))
= (x —20)(f,(t) = fr (1)) + (fulz0) — fin(20))

Therefore,
[ fr = frnlloo < (b— a)”ﬂlz - fé@”oo + [ fu(x0) = fin(wo)| — 0,

asn,m — oo. Hence, (f,) is a Cauchy sequence in (C|a, b], ||||s). Therefore, f,, converges
uniformly. Again, since f; — ¢ = f’ uniformly, it follows that

gﬂ@m%/f@w

x
Zo
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Jim [fu(x) — fulzo)] = f(z) — flzo)
lim fu(x) = f(x) (2l fulzo) = flzo))

Remark 1.5.8. Convergence of (f,(xg)) is necessary in the above result. Consider
fn(t) =Vt +n, t €0,1]
Then f, does not converge at any point of [0, 1], but
1

"(4) = unif.> 0
Jalt) 2Vt +n

Since
1

1
sup |f1(t) — 0] = sup =
t€[0,1] () | 1 2VE+n  2yn

Exercise 1.5.9. Let f,, : R — R. Check for uniform convergence of f,, to some f:

— 0.

L falt) = =

2. fu(t) =n%t(1 — ).
3. fult) =te™ ™.
Also, verify for term-by-term integration and differentiation for each of the above.

Theorem 1.5.10. Let E C R, and f, — f uniformly on E. For a limit point x of E.
Suppose

%1_{2 fa(t) = A, (finite) (*)

Then (A,) is convergent and
lim f(t) = lim A,.

t—x n—o00
That 1is,
lim lim f,(¢) = lim lim f,(¢)

t—ax Nn—00 n—oo t—x

Proof. Since f,, — f uniformly on E. For each € > 0, there exists ny € N such that
Fal®) = fu() <& Vnom>ng, VL EE *)

By (*), it implies that |A, — A,,| <€, Vn,m > ng. So (A4,) is Cauchy, hence convergent
— A, — A (Say). Now,
|f<t> - A| - ’f(t) - fn(t) + fn(t) — A, + A, — A|
< () = fa()] + | fu(t) — Aul + [An — A
<€ete+te
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fort € (x — 9,2+ 0) \ z and n > ng ( free of ¢)

lim f(t) = A = lim A,

t—zx n—00

Thus, lim lim f,(¢) = lim lim f,(¢)

t—ax Nn—00 n—oo t—x

]

Theorem 1.5.11. Let f, : [a,b] — R be such that (f!) converges uniformly. If there
exists xg € [a,b] such that (fn(x0)) is convergent, then (f,) is uniformly convergent, and

Jim £1(0) = (Ji o))

(i.e. limit and derivative commute).

Proof. The first part of the proof is as earlier. By the Mean Value Theorem, it follows
that

(@) = fm(@)] < (0= a)l|.f, — frull + [fn(z0) = fm(o)]

Since f/ converges uniformly and f,(zo) is convergent, it follows that f, — f (say)
uniformly.

Claim: lim,_,, f!(x) = f'(z).

Notice that f; need not be continuous, hence Fundamental Theorem of Calculus cannot
be applied. Therefore, we need to exploit the differentiability of f. For = € [a, b], define

fn<x> - fn(t>

r—1

Spn(t) = ) te [CL, b] \ {w}

Then
f(z) = f(t)

r—t
Notice that limy_,, ¢, (t) = f/(z) (finite). Also,

on(t) = om(B)] = [fu(z) — fr(@)] <€ (by MVT)

for n,m > ngy and for all t € [a,b] \ {z}. Thus, ¢, — ¢ uniformly on [a,b] \ {z}. Apply
previous theorem with E = [a, b]. Then,

lim @, (1) = = p(t)

lim f!(z) = lim lim ¢, (¢) = lim lim ¢,(t) = limp(t) = f'(z).

n—00 n—oo t—x t—ax Nn—00 t—zx

Thus, /
lim £ (x) = ( Jim fuo))

n—oo n—oo
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1.5.2 Term-by-term differentiation

unif

Let S, = fi + fa+ -+ + fa, where each f; : [a,b] — R such that S, — S and
Sn(xo) — L. Then, lim(S)) = (lim S,,)". That is,

fi+h+ o+t =+ttt fat )

This raises a very fundamental question: When does

([ swa) = [ rwa ()

hold? Notice that if f’ is continuous then for

by the Fundamental Theorem of Calculus, F'(z) = f'(x).
(F—=f)=0

By the Mean Value Theorem, F' — f is constant. So F(z) = f(z) — f(a) (" F(a) = 0).
However, if f’ is not continuous, i.e. f’ € R[a,b] , then (**) need not be true.
Consider the sequence f, : A C R — R. We say f, convergesto f: ACR — R
pointwise if for any ty € A, and Ve > 0, 3N € N such that
|fulto) = f(to)| <&, Vn=N

Notice that N = N (e, to).
Example 1.5.12. f, : R = R, f,(t) =e ™" neN. Then
1 t=0
t) =
/) {0 [t| >0
1£2(0) = f(O)] =1 =1[=0<e, Yn>1
Now, if [tg| > 0, t2 > 0. Then for

|fn(t0) — O| <é€ implies €_mSg < e

1

g

implies n > 2

0
1

Let Ny = Pofffw + 1. Then Ny = N(e,tp) and Ny is larger when [ty is close to 0. Thus,
0

Ny cannot be free of t.
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However, if it happens that Ny is free of choice of ty € A. Then, we say, f, converges to
f uniformly.
Note: f, — f uniformly if Ve > 0, 4N € N such that

1fu(t) — f(t)] <&, ¥n>N,Vte A

Then
sup |fu(t) — f(t)| <&, Vn>=N
teA
or
1fo— fllo <&, ¥n>N,
So,

| fr — flloo = 0 as n — oo

If f.(t) = e teR, neN, supyeg | fn(t) — f(t)| = 1 4 0. Hence f,, — f pointwise but
not uniformly.

Example 1.5.13. If f,,f : A C R — R be such that f, — f uniformly. Then for
|fn(t)] < M, implies f is bounded.

Ol < [f(E) = In@] + [fn(B)] <1+ My

Example 1.5.14. If f,, — f uniformly and f,, are continuous/uniformly continuous, then
f is continuous/uniformly continuous.

Theorem 1.5.15. Let f,, f € Rla,b] be such that f, — [ uniformly on [a,b]. Then

/abfn—>/abf (hm/abfn:/ablimfn)

Proof.

b b
La&—fﬂséL&—ﬂsnm—ﬂuw—@

Since f, — f uniformly implies || f, — f|l« < &, for any € > 0, for all n > N.

Therefore,
b b
/afn_/a f

[r[r

<eglb—a), Yn>N

Thus,
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Corollary 1.5.16. If f, € R[a,b] and S, = fi + -+ fn — S uniformly, then

b b
/a Z fn = ZA fn
(This follows immediately from the previous result.)

Theorem 1.5.17. Let f, € Clla,b] be such that f, — g uniformly. If there exists
xo € la,b] such that f,(xqg) converges, then there exists f € Clla,b] such that f, — f
uniformly and f' = g.

Remark 1.5.18. Convergence of (f,,(z¢)) is necessary in the above result. Consider
fult) =Vt +n, te|0,1]
Then f, does not converge at any point of [0, 1], but

1 it
(t) = =0
falt) 2Vt +n

Since
1

1
sup |f!(t) — 0] = sup -
te[0,1] nlt) =0 e, 2Vt +n  2y/n

Exercise 1.5.19. Let f, : R — R. Check for uniform convergence of f, to some f:

— 0.

L fult) = =5,
2. fult) = n%t(1 —*)™.
3. fult) =te™ ™.

Also, verify for term-by-term integration and differentiation for each of the above.



Chapter 2

Function of Several Variables

This chapter extends one-variable calculus to functions on R™. After fixing notation
and basic limit/continuity concepts, we study partial and directional derivatives and
the precise notion of differentiability via linear approximation. The chain rule is
developed in a form suitable for compositions and coordinate changes. We then
establish Taylor’s theorem as a higher-order approrimation scheme, and conclude
with two central structural results: the inverse mapping theorem and the implicit
function theorem, which explain when nonlinear maps are locally invertible and when
level sets can be described as graphs.

2.1 Syllabus map

This chapter develops multivariable calculus from a rigorous analytic viewpoint. We
proceed from limits and continuity to differentiability, and then to the inverse and implicit
function theorems.

2.2 Limits and continuity

2.2.1 Notation and basic definitions in Euclidean space

Forne {1,2,..} = N;R* =R xR x--- xR. Let x € R, then x = (21, %2,...,%,).
n copies

Let 0 € R™, represent as 0 = (0,0,...,0). For x,y € R", A € R:

x+y=(zi+y, v2+y2, -0\ Tn+Yn)
Ax = (Azq, Axa, ..., Azp)

41



42 CHAPTER 2. FUNCTION OF SEVERAL VARIABLES

Define the standard inner product (-,-) : R® x R® — R given by

(z,y) = inyi =Ty +X2Y2 + -+ TpYn
i=1

Then inner product (-, ) satisfies,
(i) (v,z)y=af+a3+--+22>0.
(ii) (z,z) =0 if and only if z = 0.
(iii) For o, € R and z,y,z € R™

(z, ay + Bz) = oz, y) + B(x, 2)
(ax + By, 2) = afz, z) + By, 2)

Therefore, (-, -) is a bilinear map and is called the inner product.
Let x € R™. Define the norm:

=] = \/<w,:1:> :\/x%+x%_|_...+x%

For z,y € R", then

Kz, y)| < |lz|lllyll (Cauchy-Schwarz inequality).

Ifz#0,y#0, then [[z]| # 0, |lyl| # 0.

[

=1 and HII?JTHH = 1. We need to prove the inequality when ||z| = 1, ||y|| = 1.

T

But [l
For any t € R, (z — ty, x — ty) = ||z — ty||* > 0.
Let P(t) = (x — ty, x — ty). Then

P(t) = (z,z) — 2t{z,y) + 2y, y)
=12z, y)+t*-1  (since ||lz| = [y = 1)
=t*—2t(x,y) +1>0

Take ty = (z,y), then P(ty) = 12 — 22+ 1 = 1 —tZ > 0 implies 3 < 1 implies |ty] <
1 thatis [{x,y)| < 1.
Notice |(z,y)| = 1 if and only if z = ay or y = ax for some a € R. Suppose y = ax, then

(2, ax)| = |af|(z,2)| = |af -1-1

= [loz]l-lzIl = [lyl]- |l
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implies |(x, az)| =1

Suppose [{(x,y)| =1---(1). Claim: y = ax, for some a.
Let p(t) = t* — 2t{x,y) + 1. If we take tq = (x,y), then

plto) = (z,9)* = 2(z,y)* +1=0 (by (1))

But p(ty) = ||z — toy||*> = 0 if and only if x = tgy. Thus, x and y are linearly dependent.

Theorem 2.2.1. : [(z,y)| < ||z| ||yll,Vz,y € R™ and |(z,y)| = ||| ||y|| if and only if
there exist o« € R such that x = «y. that is, x and y are linearly dependent. (Explain
linear dependent sets and so forth).

Forx,y e R":

lz+ylI> = (z +y, 2 +y)
= llzl* + llyll* + 2(z, y)
< ]l + yll® + 20zl lyll - (sincel(z, y)| < [lz/l[|yl])
= (=l + llylD)*

Therefore, || +yl| < [lz|| + [lyll  (Triangle Inequality).

Bolzano- Weierstrass Theorem: Every bounded sequence (a,) C R has a conver-
gent subsequence.

Bolzano- Weierstrass Theorem for R?:

Let { X0} = {(wn, ) }- | Xull = 22 +y2 <M, Vn>1.
’mn’ < \/$%+QTQL§M
Y| < V22 +y2 < M

By Bolzano- Weierstrass theorem x,, — x and {(zn,,Yn,)} is bounded. So y,, is bounded.
So by Bolzano-Weierstrass theorem yy, , — y. Hence, (Tn,,, Yn,,) — (T,9).
R": Let Xy = (af, 2% ... 2F). If {Xy} is a bounded sequence in R™, then there exists a

subsequence { Xy, } such that Xy, — X € R™

2.2.2 Limits in Euclidean space

Suppose f : (a,b)(C R) — R. If limj,_o f(x + h) and limj,_,o f(z — h) both exist and are
equal, then we say the limit at x exists.

Suppose f : D(C R?) — R. lim, 4)—0,0) f(2,y) = finite and equal along all paths joining
(z,y) and (0,0). Let z = rcos®, y = rsinf, so (z,y) — (0,0) if and only if 22 + y* —
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0 thatis 72 -0 or r — 0 (sincer > 0). lim,_,o f(rcosf,rsinf) = finite, we say
limit at (0,0) exists.

Let D = (a1,b1) X -++ X (an,by), and f: D(CR") — R™ f(X) = f(x1,22,...,7,) =
(filz1,.. . 20), oy fm(x1, ..., x,)). Then fissaid to be continuous at X € D, if for every
€ > 0, there exists ¢ > 0 such that Y € D with ||X — Y| < ¢ implies ||f(X) — f(Y)|| <e€

m 1/2
implies (Z () - fi<Y>|2) <e
=1

implies |f;(X) — fi(Y)| <e, Vi=1,2,...,m

Thus, f continuous at X implies each component f; is continuous at X.

Conversely, if each f; for ¢ = 1,2,...,m is continuous, then for € > 0, there exists
d > 0 such that || X — Y| < ¢ implies | f;(X) — fi(Y)| < = implies || f(X) — fY)| <e.

Thus, it is enough to consider f : R? — R for questions result regarding f : R® — R™.

2.2.3 Continuity in Euclidean space

Definition 2.2.2. Let D(C R?) and f : D — R. Then f is said to be continuous at
Xo = (z0,%) € D, if for every £ > 0, there exists § > 0 such that for all X = (z,y) € D,
| X — Xo|| < 9 implies | f(X) — f(Xo)| < € that is, limx_,x, f(X) = f(Xo)

Negation of Continuity: 3¢y > 0 such that V6 > 0, 3X € D such that || X — X,| <
6 but | f(X) — f(Xo)| = o

Proposition 2.2.3. If f : D(C R?) — R is continuous at Xq if and only if for every
sequence X,, — Xo, implies f(X,) — f(Xo).

Proof. Let Xo = (x0,y0), X = (p,yn). Suppose f is continuous at X,. Then for each
e > 0, there exists § > 0 such that

|X = Xoll < & implies [ £(X) — F(Xo)| <. 1)
Let X,, — Xo. Then for 6 > 0, there exists ng € N such that
n > ng implies || X, — Xo|| < § implies |f(X,,) — f(Xo)| < ¢ (by (1)) (2)
Thus, X,, = Xo = f(X,) = f(Xo).
Conversely, suppose (2) holds, but f is not continuous at Xy, then 3&5 > 0 such that
V§ > 0, there exists X € D such that || X — Xo|| <0 but |[f(X)— f(Xo)| > €o. Take

6 =1 >0, then there exists X,, € D such that || X, — Xo|| <1 but |[f(X,)— f(Xo)| >
£0. So X, — XQ, but f(Xn) 7L> f(Xo) UJ
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Example 2.2.4. Define
1 ifxy#0
flz,y) = :
0 otherwise
Then ( l)iH%O 0 f(x,y) does not exist. But if zy # 0 is replaced by zy = 1, it exists.
m7y *) b
Exercise 2.2.5. Let f: R? — R, check the continuity of f at (0,0).

Ty

—— f2?+9y2 40
L f(z,y) = V&2 +y°
0 otherwise
sin?(z — y)
2. =" 0,0) =0.
f(:c7 y) \/m ) f( ) )
%y
if 22 0
3. flry)={2+y ty7
0 otherwise
2
if 24 240
4 fay) =ity Ty
0 otherwise
sinzy .
if xy #0
5 flw,y) =1 ay
0 otherwise

Using the epsilon-delta definition: Let f(x,y) = %, f(0,0) =0. Forxz =y, f(z,z) =
Zz Y
. Thus, |f(z,z) — f(0,0)| = 5. Take ¢ = %, then there does not exist any § > 0 such
that /2% 4 y? < ¢ implies |f(z,y) — £(0,0)] < ;.
Composition of Two Continuous Functions:
Let f: D(CR?) — R and g : I(C R) — R be continuous, where f(z) € I for each .

Then g o f is continuous.
Proof. Since f is continuous at z € D, for € > 0, there exists d > 0 such that
|z = yl| <& implies |f(z) — f(y)| <e. (1)
Similarly, ¢ is continuous at f(z), so for n > 0, there exists u > 0 such that
|t — f(2)] < p implies |g(t) — g(f(x))| <n.

Given ¢ > 0, choose n = €. Then from (1), ||z — y|| < ¢ implies |g(f(z)) — g(f(y))| < 7.
Thus, g o f is continuous at z.
Alternatively, let x,, — x, then f(z,) — f(x) and hence g(f(x,)) = g(f(z)).
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Example 2.2.6.

sinry .
if zy # 0
f(x,y){ Yy

1 otherwise
sint
Sty
f(2.y) = pogla,y), where p(t) = {1 ;7 )
t =

2.3 Differentiation in R"

2.3.1 Partial derivatives

Let D = (a,b) x (c,d) (or in general open set in R?). Let f: D — R. Let zg = (zo, o),

of . J(wo+h,y0) — f(z0,%0)

a*x(fﬁ'o?yo) = }1112}) h

If this exists, we say f has partial derivative parallel to the z-axis at (xq, o), and we
denote it by %(wo, Yo) = fz(x0, o). In other words, for € > 0, there exists § > 0 such that

f(xo+ h,y0) — f(20, yo)
h

f(xo+h,y0) — f(xo,y0) = hfelzo, y0) + hn(h)

where n(h) — 0 as h — 0 (let hn(h) = ~y(h)). f(zo+h,yo) — f(20,y0) = hfe(@o, yo) +7(h)
where y(h) — 0 as h — 0.

Similarly, f(zo,y0 + k) — f(x0,y0) = kfy(z0,v0) + (k) where v(k) — 0 as k — 0.
Note: From the accompanying graph, one sees that the existence of the partial derivative
in the direction parallel to the z-axis depends only on the values of f along an appropriate
line segment through (z, yo); it does not require f to be defined on an open disk around

(70, Yo)-

|h| < ¢ implies

— fe(o,40)| < €

Yy

Example 2.3.1. f(z,y) = 24 2
x Y

£(0,0) = 0. Then f,(0,0) =0 = f,(0,0) but f is not

continuous at (0, 0).

2.3.2 Directional derivatives

Directional derivative is the rate of change of a function parallel to a given direction.
Let zo € D (rectangle or open set) and f : D(C R?) — R. Let v = (vy,v2), |v|] =
\/v? + v3 = 1. Then the directional derivative of f at xy along v is defined by

flxog+tv) — f(xo)
t

va(l’o) - 11&1_{%



2.3. DIFFERENTIATION IN R" 47

Note: The existence of the directional derivative of f at x( in the direction v depends
only on the values of f along a line segment through zy parallel to v; it does not require
f to be defined on an open neighborhood of x.

Example 2.3.2.
2y if gt 2 £ 0

0 otherwise

t2v?vy 0 v=0
I LI Bt
% V2 7é 0
But f is not continuous at (0,0), for y = ma and so forth.

Example 2.3.3. Let D = (a,b) x (c,d) (or open convex set in R?), that is, (z,y €
D implies Az + (1 — N)y € D, VA € [0,1]). Suppose f : D(C R?) — R such that
fo(z,y) =0= fy(x,y), Vo,y € D. Then f is constant.

Since D is convex, (a,s) x {y} C D. Thus,

| felay)dz =0

f(s,9) = fla,y)

Let g(y) = f(a,y). Then 0 = 2 f(s,y) = ¢'(y) implies [’ ¢'(y)dy = 0 implies g(y) =
g(c). Thus, f(s,y) = f(a,y) = (y) = g(c) for all (s,y) € D implies f is constant on D.
Remark: A similar proof will work for D open and convex.

2.3.3 Differentiability

Let D be an open set in R?. Let H = (h,k), Xo = (x9,10). Then f is said to be

differentiable at X, € D if there exists L € R? such that

f(Xo+H)— f(Xo) —L-H
IH ||

er(H) = —0 as |[H|—0. (*)

Notice that, since we need limit in (x) exists in a d-neighborhood of Xy, it means f is
differentiable along all directions including parallel to x-axis and y-axis.
The vector L is unique. Suppose not, then there exist M € R? such that (*) holds. Thus,

(L—M)-H

] =e(H)—ey(H)—0 as |H| —0.
Set H =tV ,V # 0 in R%. Then,

Ll = M) V]
ST

=0 implies |(L — M) V| =0, VV €R?
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Consider V.= L — M, then ||L — M| = 0 implies L = M. Hence, the derivative of f

at Xo is unique and we write L = f'(X). Since e(H) = f(XOJrH)*fH(gﬁ)*H'f/(XO) — 0 as

|H|| — 0. Set H=tV, ||V| = 1.

f(Xo +1V) — f(Xo) — V- f'(Xo)
il

as t — 0. Thus, V - f'(Xo) = Dvf(Xo). Put V= (1,0), then Dy f(Xo) = fo(Xo).

Similarly, V' = (0,1), Dy f(z0) = f,(Xo).

Example 2.3.4. Let D be an open set in R? and f : D(C R?) — R be such that f, and

fy both are bounded on D. Then f is continuous.

Proof.

f(wo +h,yo + k) — f(x0, y0)

= f(xo +h,yo + k) — f(xo, 90 + k) + f(z0,y0 + k) — f(20,¥0)

= hfy(zo+ O1h,yo + k) + kfy(z0,yo + O2k) (By Mean Value Theorem of one variable).
where 61,6, € (0,1).

Hence, |f(zo + h,yo + k) — f(zo.y0)| < [A[My + || M2 < v/h? + k2\/ MF + M3 where
|fx(may)| < Mla |fy($,y)| < M2 for all (.’E,y) eD. ThUS, |f(fo+hayo +k) - f(‘r07y0)| —
0 as Vh?+k? — 0. Therefore, f is continuous at (zg, yo).

e(tV) = — 0

]

Exercise 2.3.5. Let Vf = (f,, f,), as along as f,(Xo) and f,(Xo) just exist, then f need
not be differentiable at Xj.
Note: If f is differentiable,
Dy f(Xo) = f'(Xo) = (fa(Xo), fy(X0)) = V [(Xo)
Example 2.3.6.
EVETR iy 40
0 otherwise

f(x,y)z{

Then f is continuous at (0,0) and D, f(0,0) = z% =2 or 0 if vy =0. But f is not
differentiable at (0, 0).

VR R —k
N
k k
h

e(h,k) =

_|k:| 2 1|2
For h = mk,m,k > 0,

e(mk,k)=1-— k—0

_ 0
V1+m? 70 s
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Exercise 2.3.7. Prove that

(x2+y2)sinx27}r2 if 22 +9y*>#£0
f(x,y){ !

0 otherwise

is differentiable at (0,0) and f’(0,0) = (0,0). But none of f, and f, is continuous at
(0,0).

Theorem 2.3.8. Let D be an open set in R%. Suppose f, and f, are continuous in a
neighbourhood of (xg,y0) € D. Then f is differentiable at (zo,yo).

Proof. Since (xg,y0) € D and D is open, 36 > 0 such that Bs(zg,y0) C D. Let (z¢ +
h,yo + k) € Bs(xo,v0). Then consider

f(zo+ h,yo + k) — f(x0,90) — hfa(x0,90) — K fy(20, v0)
Vh? + k?

Since f, and f, exist in Bjs(zo, yo) (say), one can apply the Mean Value Theorem coordinate-
wise. Thus,

e(h, k) =

hfs(xo +61h,yo + k) + kfy (2o, yo + 62k) — hfo(x0,y0) — kfy(z0,Y0)

h k) =
b N

where 0 < 61,0, < 1.
le(h, k)| < Vh?+ k? ((fm(xO +01h,yo + k) — fa(0,90))? + (fy (20, yo + Oak) — fy(xo,yo))2)

Since f, and f, are continuous in Bj(xo,yo), |€(h, k)] — 0 as v'h? +k? — 0. Thus f is
differentiable at (xq, yo)- O

Geometric Interpretation of Derivative:

For function from R" — R. Let y = f(x¢) + f'(x0)(x — x9) For n = 1, y = f(xo) +
f'(xo)(x — x0) (line passing through (zg, f(x0))). For n =2, 2 = f(xo,y0) + fz(x0, v0)(x —
o) + fy(z0,Y0)(y — yo) (a plane passing through (zo, yo, f (2o, %0))).

2.3.4 Chain rule

IcR-% LR

Let F = fog. If fand g are both differentiable, then f o g is differentiable.

Proof. Since f is differentiable at y = g(z),

fly+Ek) = fly) = f'(y)k = kn(k) (1)
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when n(k) — 0 as k — 0. Since ¢ is differentiable at z, ¢ is continuous. Set k =
g(x + h) — g(x), then h — 0 implies k — 0. Since g is differentiable,

k=g(x+h)—g(x) = hg(x) + hu(h),

where p(h) — 0 as h — 0.

Consider
_ foglx+h)— fog(x)— f(g(x))g (x)h
e(h) = Y
_ Stk = fy) = )k = hp(h))
h
Since 1 = #@kut)

e(h) = n(k)(g'(x) + p(h)) + f'(y)u(h)
Since h — 0 implies & — 0 implies n(k) — 0. So €(h) — 0. Thus f o g is differentiable
and

(fog)(x) = f'(9(x))g'(x)
O

Chain Rule for R? — R : If f and g both are differentiable, then f o g is differentiable
and

(fog)(x) = f(g(x))g (x)

Proof.

n(k) = fly+Fk) —HJI‘;(ﬁy) — Wk,

where ||k|| — 0. Since g is continuous, set K = g(x + h) — g(z), then ||k|| — 0 as |h| — 0.
Since g is differentiable at x,

k= g(x+h) —g(x) = hy'(x) + [h|p(h)

that is,
1Bl < [Rlllg" ()] + [P [lu(R)]]
Now,
e(h) = foglx+h)—fo T]igf) — ['(g(x))g'(x)h
le(h)| < In(R)I(lg" (@) + LD + L @) (R
— 0 as h — 0, because h — 0 implies £ — 0
Thus,

(Fog)(@ = flo(@)g(@)
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Mean Value Theorem for Convexr Domain:

Let D be an open and convex set in R?. Suppose f : D — R is differentiable. Then
for any x,y € D, there exists ¢ € D such that f(z) — f(y) = (z —y) - f'(c) where
ce(x,y)={ M+ (1-Ny:0< <1}

Proof. Consider
p(t) = f((1—t)z +ty)

By the chain rule, ¢ is differentiable on (0, 1) and
Pt) = (1=t +ty) - (y— )

By the Mean Value Theorem for one variable,

that is,
fy) = @) = f((1 =Nz +2y)(y — )
m

Function from R" to R™: Let D be an open set in R" and f : D(C R") — R™ be

differentiable. Then o (x0)
/ o Ji(zo
f <x0) B ( ax] )an

Proof. We know that f : D C R®™ — R™ is differentiable at xo if there exists a A,,xn
matrix such that

f(xo +h) — f(xo) — Ah
17|

e(h) = — 0 as|h]] =0, (1)

Let {e1,...,e,} and {uy, ..., u,} be the free standard basis for R” and R™ respectively.
If f=(f1,..., fm), then fi(z) = f(z) - u;. In (1) substitute h = hje;, ||h]| = |h,],

f(zo + hje;) — f(wo) — hyf'(wo)e;

e(hjej) = — 0 as hj —0

|
if and only if lim f(@o + hye;) = flao) = f'(zo0)e;
h;—0 h;
implies <8fi(x0)> exists and
Lj

- (%)
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Ofi(zo) ... Ofi(zo)
oz Oxn
Ofm(®o) .. Ofm(zo)
Ox1 Oxn mxn

Write J¢(zg) = (%ﬂ;@)mm. Then Jy is called the Jacobian matriz of f.

Note: Existence of %ﬂ;o) does not imply that f’'(zg) exists.

Example 2.3.9. f:R? — R?

oy [ 385) g
’ (0,0) otherwise

Then f = (g, h).

. 9y _ (00
J5(0,0) = (Z Zy) (0,0) = (o 0)

But f is not differentiable at (0, 0).
h2k hk,Q _ 0 O h
(h2+k27 h2+k2) 0 O k

N
hk
lle(h, k)|| = h2|+|/£2 #0as vVh2+ k2 =0
Therefore, f is not differentiable at (0, 0).

le(h, B)|| = ‘

Example 2.3.10. Let f : R2 - R :

f(z,y) = (e cosy, e’ siny)

det (J;(z,y)) = e** # 0 implies J;(z,y) is non-singular matrix V(z,y) € R?, but f is not
one-to-one on R?, since f(z,27 +y) = f(z,y).

Norm of a matrix (or linear map):
Let A:R™ — R™ be linear. Then A = (R, Ry, ..., Ry)T, where R;’s are rows of A.
Let x € R". Then
Az = (Ryz, Rz, ..., Rpx) € R™

and

el = S ol < (S IR ol



2.3. DIFFERENTIATION IN R"

If x #0,

|Az||
< R;|?

Therefore, {HA‘ch :x # 0} is bounded in R. Hence, it has a supremum. Let

lll

A
. i

w20 ||zl
Then
(i) [[Az| < [|A[l[|]], Vz e R"
(ii) [|A[l = SUD||z||=1 | Az|.
Example 2.3.11. Let A:R?> — R, A(x,y) = 42 + 3y. Then

|All = sup |4z +3y|= sup |4z + 3V1— 2?|
2—1 1

Example 2.3.12. Let A: R*> = R? A(x,y) = (3z,4y). Then

|A|| = sup ||(3z,4y)|| = sup /9224 16y2 = sup \/9352 + 16(1 — z?)

22+y2=1 x2492=1 0<z<1

Chain rule for functions from R" — R™:

53

Let D be an open set in R” and f : D C R® — R™ be differentiable and g : f(D) — R!

be differentiable. Then go f : D — R' is differentiable and

(go f)(z) =4 (f(x)f ()
(where ¢'(f(z)) is an [ x m matrix and f’(z) is an m X n matrix).

Proof.
k) — —d Wk
nk):g(?ﬁ ) ||gk$|y) g'(y)

—0 as Jk||—=0

Since y = f(z) and f is continuous at z, set k = f(z+h) — f(z). Then ||h|| — 0 implies

k]| — 0. Also,
1Bl = [1f (z + h) = (@)l = [1f"(2)h + ||Alle(R)]]

(since f is differentiable at x )
< 1 @A+ 1Rl leCR)l

that is, . )
— < —{]|f + |le(h
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Now,
goflx+h)—go f(x) =g (f(z))f'(x)h
i = 7
_ 9 +k) —9(y) = g' W)k = |Ihlle(h)
Il
_ [Elln(h) — NIRllg'(y)e(h)
|2l
[ < AL @)+ eI} + [lg" @) Hle(R)]| — 0

as ||h|| = 0. Hence, (g o f)'(z) exists and (go f)'(x) = ¢'(f(x)) f'(z). O

Example 2.3.13. Let f : R — R be differentiable and F' : R" — R be defined by
F(x) = f(||z]|*). Then F is differentiable and F'(z) = 2f'(||x[|?)x.
Let g(x) = ||lz|* = 21+ - + 22. ¢'(z) = (221, 2xs, ..., 2x,) Thus,

F(x) = (fog)(x)

By the chain rule, since F' is differentiable and

that is,
F'(x) = 2f'(||«[]*)2

Exercise 2.3.14. Let F(x) = f(||:v||2k) Prove that F'(x) = 2k||x||2k’2f/(||x||2k>x.

Euler’s Formula. Let f:R" — R™ be differentiable and f(rz) = r®f(x), ¥r > 0 and
some a € R. Then f'(x)z = af(z).

Proof. Since f(rz) =r*f(x), Vr > 0, differentiate both sides with respect to .

f(ra) 5 ) = @ (2)

fl(re)z = ar®™ f(z)
Putting r =1,

For n = 2,

Example 2.3.15. If o > 0, f is continuous at 0. If o > 1, f is differentiable at 0.
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Proof. (i) If « >0, f(0+ h) — f(0) = f(h). Take h = ||hljv, with [jv]| =1
1FO+R) = FOI = A[*I[f @)l =0 as Al =0

(ii) If a > 1,
(?xj h—0 hj
= limM —0ash; >0 (sincea>1)

implies J¢(0) = 0 (m x n matrix)

fO+h) = f(0) = J(0)h _ [|A]*f(v)

pumy pumy :1 pum—
e(h) o el = 1= el

— 0 as ||k = 0

Mized Derivatives: Let D C R™ (or R?) be an open set.
0 (8 f ) 0*f

~ o2
B o2 f

Example 2.3.16.

222
Yo W2+ y#£0

f(w,y):{()’ 24y 0

Y h,0) — £,(0,0

But

fy(h,o) _ E_I)% f(h,k);f(h,()) —h

So,
. h—=0
Foel0.0) = iy =0 <1

h
Similarly, f,(0,0) = —1 # f,.(0,0).

Notations: C*'(D) — set of all continuously differentiable functions on D whose derivative
is continuous (that is, f, and f, both are continuous).
C?*(D) - set of all functions on D whose partial derivatives up to second order are continuous.

(that is, fa, fy, faysfyws fows fyy are continuous.)
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Theorem 2.3.17.  If D is open and f € C*(D), then fuy(xo,y0) = fyz(Z0,Y0)-

Proof. Since D is open and (xg, ) € D, there exists an open ball Bs(zg,yo) C D or one
can draw a rectangle. Let

F(x,y):f(:c,y)—f(azo,y)—i—f(xo,yo)—f(:z:,yg) (1>

Again, let A(x,y) = f(x,y) — f(zo,y). From (1), we get F(z,y) = A(x,y) — A(z,yo) By
the mean value theorem,

F(axy):g;l(x,n)(y—yo)Z(gg(ﬂc,n)—gg(wo,n))(y—yo) where 1= ot (y—yo)0,0 < 0 < 1
82
Flay) = 5 ()~ 20)(y )

where £ = z9 + (x — x0)0, 0 < 0 < 1.

F(z,y) _ f
(x —20)(y —wo) 0x0y

(&)

Since (z,y) — (xo,y0) implies (§,m) — (xo, o) and % is continuous at (g, yo),

- F(z,y) O’ f
lim —
(@y)—>(@owo) (. — o)y — yo)  Oxy

(o, Yo) (2)

Similarly, let B(x,y) = f(x,y) — f(z,y0). Then F(x,y) = B(z,y) — B(zo,y). It is
straightforward to verify that

: F(z,y) 0*f
lim =
(zy)—=(zowo) (T — To)(y — o)  OyOx

(%0, %0) (3)

xr y o ,y y xr ’ y

Note that if f € C?(D), D C R", then

0 f 0 f ,
8xj0xk 89@8@’ \V/], T 1
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2.3.5 Taylor’s theorem

Theorem 2.3.18 (Taylor’s Theorem). Let D be an open set in R?* and f € C*(D). Then
there exist A € (0,1) such that

fX+H) = f(X)+ f(X)H+ H f"(C)H,
where C' = X + AH and ||H|| <.

Proof. Let g(t) = f(X +tH), so g(t) = f o p(t) where p(t) = X +tH.

) = f'(e(t) H

g'(t) = f'(e(t)e'(t
)+ Efy(p(t))
(

= hfa(o(t)
g"(t) = h(f2) ((0)¢' (t) + k(f,)’
= h(fex (0 (1)) fry (0O H + E(fyz (0 (1)) fy (1)) H
2(2(1)  fay(p(t)) t_
( yx(g( ) Fole (t))) H where H'= (hk) (row vector)
Since g(0) = f(X), g(1) = f(X + H), the Mean Value Theorem for one variable gives:

)y (1) (t)
) H

8

o(1) = 9(0) +g/(0) - 1+ Sg"OV).12

So,
1
F(X+H) = f(X) + f(X)H + SH' f"(C)H
where C' = X + AH and ||H|| <. O

Theorem 2.3.19. Let f : [a,b] — R™ be differentiable on (a,b) and continuous on [a,b].
Then there ezists A € (a,b) such that || f(b) — f(a)] < ||f'(N)||(b—a)

Proof. Let g(t) = (f(b) = f(a)) - fla + (b —a)t). Then g'(t) = (f(b) — f(a)) - f'(a +
(b —a)t)(b — a) (by chain rule). Since g : [a,b] — R is differentiable, by the Mean Value
Theorem, there exists A € (a,b) such that

g9(b) —g(a) = g'(A\)(b—a)

1£(8) = f(@)lI* = (f(b) = f(a)) - f'(N)(b—a)
< F®) = fla)ll - [ b —a)

Thus,
1F(0) = f@)l < [/ (M = a)
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Theorem 2.3.20. Let D be open in R™ and f : D C R®™ — R™ be differentiable at
X € D. Then there exist X € (0,1) such that ||f(X + H) — f(X)|| < ||f(C)|| || H||, where
C=X+\H, |H| <e (for some X>0).

Note: Equality need not hold. For g: (—1,1) — R2,

g(t) = (£,1 - %)

Suppose
9(1) —g(=1) =g’ (N (1 = (-1))
2 . . . i
(2,0) = 2(3\*, —=2)) implies A = 0, i\/ﬁ

Butxz =1, y=1—1t2, 2*=(1—y)>, has no tangent parallel to x-axis.

Proof. Let g(t) = f(X +tH). Then g : [0,1] — R™ is differentiable. By previous Mean
Value Theorem, 3 A € (0,1) such that

lg(1) = g(O)] < lg'(MII(1 = 0)

If(X +H) = fOI < lgMI < I IIH]L, C=X+AH
where ¢'(A) = f/(X + \H)H. O

Notations:
(i) L,(R) = space of all linear maps from R" to R".

(i) GL,(R) ={A € L,(R) : AA™! = [}= set of all invertible matrices.

Proposition 2.3.21. Let A € GL,(R) and B € L,(R) be such that ||B — A|| < ﬁ.
Then

(i) B € GL,(R) (that is, GL,(R) is open in L,(R)).

(ii) A — A™' is continuous on GL,(R).
Proof. Let o = I\Alfl\l’ B =|B—Al. Then 8 < a.. For x € R", write

alzl = a A7 Az < af| A7 Az]
that is,
allzl] < [|Az]| = [[(A = B)z + Bz|| < [|A = Bl|||z[| + || Bz|
implies (a — B3|z < [|Bx|| (1)

(i) If Bx = 0, then (o — )||z|] = 0 implies z = 0. Since B is a one-to-one linear map

from R" — R"™, so B is onto.
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(ii) Put = B~ 'y in (1), then

1Byl 1
< , y#0.
[yl a—p
1B~y L . 1
sup < implies || B <
T Sa—p e IBT <SS
Now,
1
Bl'—AY=|B'"A-BA | <||[A-B|———=0 as A—B
I =18~ JAT < H2<a ey
Hence, the map A — A~! is continuous. n

Note: A+ A~! is one-to-one map, because A~! = B~! implies A = B.

Example 2.3.22. Let f : R — R be one-to-one and onto, and f is continuously dif-
ferentiable at 2o € R such that f’(zo) # 0. Then f~! is differentiable at yo = f(z0)
and

1y 1
(f ) (yO) - f/(l'o)‘
Proof.
—1 _ ol K
P 1

14

Let h = fY(yo+k)— Y yo), wotk=f(ro+h)and k= f(xo+h)— f(xg) implies h -
f'(xg + Oh) for some 6.

Since f'(xg) # 0, 35 > 0 such that f'(x) # 0 for all x € [zg — §,z0 + J]. So
|f'(x)] >m > 0forall z € [xg—§, x9+6]. Choose h small such that zo+60h € [xg—§, xo+7].
|k| > |h|m. Thus k — 0 implies h — 0.

f(zo+h)—f(zo)
I R e I 27 R 1 () 3 [

T @t h) = flwo)]  [Flmo+ OB @) 1F (o))

(k)]

=0 (sincef’ is continuous at o)

]

Note: If f~1 is differentiable, then f~1o f(x) =z and (f~1)'(f(x0))f (7o) = 1.
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2.4 Inverse and implicit function theorems

2.4.1 Inverse function theorem

Theorem 2.4.1 (Inverse Function Theorem). Let Q be an open set in R™. Suppose
f:QCR* = R" be a C* map such that det f'(x¢) # 0. Then

(i) 3 open sets U and V- C R"™ such that f : U — V (= f(U)) is bijective.

(ii) f~'is a C* map on V, and
(f7) (f (o)) = (f'(z0)) ™"
Proof. Let A = f'(x¢). For y € R", define ¢ : Q@ — R" by

p(r) =2+ A" (y - f(2)) (1)

Then ¢(x) = z if and only if y = f(z) (that is, x is the fixed point of ¢ if and only if
y = f(x)). Since f’ is continuous at x¢, for € = m > 0, there exists 0 > 0 such that

1

_ : 1 ! ! -
H.Z' CC()H <9 mplies H-f (‘I) f (xO)H < 2HA,1H

Let U = Bs(zg) = {x € R" : ||z — x¢|| < 6} and V = f(U).

(i) Claim: f is one-to-one on U.
Now, ¢'(z) = I+ A7 f'(z) = A7H (A= f'(z)). Thus, [|¢'(z)]| < [AT[[A=f'(2)] <
1
5.
If x1,29 € U, by the Mean Value Theorem for ¢,

1
||90(171) - 90(1’2)” < ||90/(=T1 + Ay — Il))||||l"1 - 1’2|| < §||901 - $2||-

So, ¢ is a contraction on U. Hence, ¢ can have only one fixed point. Hence, y = f(z)
for at most one x € U. Therefore, f is one-to-one on U.

(ii) Claim: V is open.

Let y* € V. Then y* = f(z*) for some z* € U. Then Ir > 0 such that B.(z*) =
{reU:||lz—a*<r}cCU.

Now, it is enough to prove that, whenever

% r . .
lly —y*|| < m implies y € V (2)
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Suppose ||y — y*|| < spa-t- Lhen

lp(z*) — 2| = |[A" (y — y")|
_ « r
<A My — vl < 3

Ifz € B.(z*) ={z € Q: |z —2*|| <r}, then

le(z) — 27| < lle(z) — (@) + llee”) — 27|

<o+l <
2.1' X 2 T.

So z € B,(z*) implies p(z) € B.(z*). ¢ : B,(z*) — B,(z*) is a contraction
mapping. Then ¢ has a fixed point z € B,(z*) such that ¢(z) = z if and only if
y = f(z). Nowy = f(z) C f(B,(z*)) C f(U) = V. Thus, V is open and hence
f U —V is one-to-one and onto (with V' = f(U) open).

(iii) Claim: f~':V — U is differentiable at f(xo).
Let y € V, then y + k € V (since V' is open) for small | k||
Let h = fY(y+ k) — f~*(y). Then k = f(x + h) — f(x) (since f~(y) = z). Now,

olx+h)—o)=h+ A f(x) - f(x+h)=h— Ak
1
implies ||h — A7 k|| < §||h||
implies [|h[| < | — A™'k|| + |A7'E|

1

< Sl + [|AR]

that is,

1 _

SRl < 1A (3)
< A&

Now,

n(k) _ f*l(y() + k) — f*1<y0) _ (fil(l‘o))flk’
Il
(@) (@0 — (f(wo + h) — f(x0))
1

In(k)|| < 1(f' (o))~ I f (o —i-”Z') — f(zo) — f'(zo)hl|

2[lA=1
—0 as h—0 (sincek — 0 implies h — 0)

implies (f~1)'(f(x0)) = (f'(20)) ™"
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(iv) f~! is continuously differentiable that is, (f~!)’ is continuous. Need to prove
(fY(yo) = (f'(x)) . Since A+ A~1 is continuous on GL,(R), (f~!) is contin-
uous.

0
Example 2.4.2. Let f : R? — R? be defined by f(x,y) = (x —e ¥, y — €*). Then

£(0,0) = (_11 D . det f1(0,0) =2 #0

Hence f is one-to-one in a neighborhood of (0,0) and
-1
o0 =rom = (4 )

2.4.2 Implicit function theorem

Consider f:R? — R by f(z,y) = 2*+y* — 1. Then f'(z,y) = (2z, 2y).

o, o
ox .0) ’ dy

=0
(1,0)

Then one can draw a ball centered at (1, 0) such that of radius » < 1 such that f(¢(y),y) =

0, that is,
r=py), lyl<r<l, oy =y1-¢

However, one cannot draw a ball of any radius around (1,0) such that f(z,(z)) = 0,
that is, y = 1(z) for |z| < r, even r very small. Because, for any r > 0, one cannot write
Y(z) =+v1—2% as x> 1 will be included in any ball around (1, 0).
However, at any point on the circle, other than (£1,0) and (0,41). One can solve z
and y simultaneously in a small neighborhood of the point.
Now, consider a linear map
A:R"xR™ — R"

Then (h, k) € R" x R™, (h,k) = (h,0) + (0, k).
A(h,k) = A(h,0) + A(0, k) = Ayh+ Ak (say)

Lemma 2.4.3. If A, is invertible (A, € L,(R)), then for each k € R™, there exist a
unique h € R"™ such that h = —A;' Ak

Proof. A(h,k) = 0 if and only if A,h + A,k = 0. Since A, is invertible, h = —A 1A k.
Now, let 2 C R™ x R™ be an open set and f : 2 C R” x R™ — R" be differentiable.

fZ(fl?"'vfn)
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£ QCR"xR™ 5 R

df; dfi dfi ofi
/ f— DY “ e DY
oh ... O Oh ... Ofi
Oz Orn,  Oy1 OYm
ff=1: S :
Ofn ... Ofn Ofn ... Ofn
oz, Ozn  Oy1 Oym 4 nx (n+m)
- 1(65), (@),
axj x ayk Y1 nx(n+m)
= (Az Ay)
Then A, : R* — R" is linear and A, : R™ — R" is linear, where A, = (gﬁ;) , Ay =
Ofi
(5), -

Theorem 2.4.4. Implicit Function Theorem: Let () be an open subset in R™ x R™.
If f: QCR*xR™ — R" be a C' map, with f(xo,y0) = 0 and det [f'(x0,y0)], # 0 for
some (xg,y0) € Q. Then

(i) There exist open sets U C R™ x R™ and W C R™ such that for all y € W there
exist a unique x € R™ with (x,y) € U and f(x,y) = 0.

(it) If v = g(y), then g : W C R" — R"™ is C* map, g(yo) = wo, f(9(y),y) =0 for all
y e W and g'(yo) = —A; Ay,  where Ay = ], A, = f.
that is, f will vanish on a curve x = g(y).

Proof. (i) Let F: Q — R" x R™ by F(z,y) = (f(x,y),y). Then F is a C'-map, and

F' (w0, 40) = {f'(IoO»yo)}x {f'(x(yyo)}y

det F'(xg,y0) # 0. Therefore, by the Inverse Mapping Theorem, there exist open
sets U C R" x R™ and V C R"™ x R™ such that FF : U — V is a one-one onto
Cl-map.

Let W ={y € R™: (0,y) € V}. Then W is open, because V is open. Since F is
onto, for y € W,
(0,y) = F(z,y) implies (z,y) € U.

implies f(x,y) =0, VyeW.
Suppose, for this y, there exist (2',y) € U such that f(z’,y) = 0. Then
P’ y) = (f(@' ), 9) = (f(z,9),y) = F(z,y).

Since F' is one-to-one on U implies 2’ = .
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(ii) Define x = g(y) for y € W. Then

(9(y),y) €U and f(g(y),y) =0 (*)

implies F(g(y),y) = (0,y) VyeW.

that is, F~1(0,y) = (9(y), y)-
By the Inverse Mapping Theorem, F~! is a C'-map, hence g is a C'-map.

To compute ¢'(yo), consider f(g(y),y) =0, y € W. Differentiating with respect
to y and using the chain rule, we get

F(9(%0), o) (g/(]y0)> =0

Let A := f'(xo,v0), then

implies A,g'(yo) + A, = 0 implies ¢'(yo) = — A4, ' A,
L]

Example 2.4.5. Prove that 2% + ye” —sin(zy) = 0 can be solved for y in a neighborhood
of (0,0), but cannot be solved for z in any neighborhood of (0, 0).

F(z,y) = 2* + ye* — sin(zy) (1)

(i) F(0,0) =0, %—5“070) = 1 # 0. By the implicit function theorem, there exists a ball

around (0,0) and an interval for = such that F'(x,g(z)) =0 or y = g(z) for |z| < r.

(ii) %](070) = 0. Hence, the implicit function theorem cannot be applied.

On the contrary, suppose x = ¢(y), then 0 = ¢(0) and

(6(y))? + ye®™ —sin(d(y)y) = 0

for |y| < r for some r > 0. Then
2¢(0)¢'(0) +1- ™ 40 e?/(0) — cos(¢(0)0) (¢/(0)0 + ¢(0) - 1) = 0

implies 1 =0 (contradiction)
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Example 2.4.6. Let f: R x R? — R?
f(~177y7 Z) = (:L‘ey + yez’ re® + Zey)
Then f is a C'-map.
p (€Y xe¥ +ef ye®
fw.y,2) = (ez ze¥  ze 4+ ey>
f(=1,1,1) = (0,0)
Let f = (f1, f2). Then

ofi 0fi
0 0z [0 e
o Of: “’“"(e 0)
oy 0z

By the implicit function theorem, there exists an open ball U in R? and open ball V in

R?, such that
(y,2) = (¢(x),¥(x)), |z| <r for somer > 0.

Exercise 2.4.7. Let f : R?> — R be a C'-map such that f(0,0) = 0, f,(0,0) = 1. Let
F(z,y) = (f(x,y),y). Prove that F' is injective in some neighborhood of (0,0). Does F
remain injective in any neighborhood of (0,0)7

Remark: Condition in implicit function theorem or inverse mapping theorem on deriva-
tives are sufficient.

Example 2.4.8. f:R*> - R, f(z,y) = 22 — 3.

£(0,0) =0,
of B
@(070) - 07

but y = 2%/ is a solution of f(x,%) = 0 near (0,0).

Example 2.4.9. Let f : R? — R? f(z,y) = (23,4%). Then det f/(0,0) = 0 but f is
one-to-one, onto.
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Chapter 3

Lebesgue Measure and Integral

This chapter presents the measure-theoretic foundation of modern integration. Mo-
tivated by limitations of the Riemann integral, we build Lebesgue outer measure, de-
duce its main properties, and define Lebesque measurable sets, including instructive
examples such as the Cantor set and the existence of non-measurable sets. We intro-
duce measurable and simple functions, define the Lebesque integral, and develop the
main convergence principles—the monotone convergence theorem, Fatou’s lemma,
the dominated convergence theorem, and the bounded convergence theorem—together
with a useful estimate (Chebyshev’s inequality) for controlling the size of level sets.

3.1 Syllabus map

We introduce the measure-theoretic approach to integration: we build Lebesgue measure
from outer measure, define measurable functions, construct the Lebesgue integral, prove
convergence theorems, and introduce the LP spaces.

3.2 From Riemann to Lebesgue

3.2.1 Limitations of the Riemann integral

Let f : [a,b] — R and f is bounded on [a,b]. Then f € R|a,b] (that is, f is Riemann
integrable) if and only if f is almost continuous. However, there are functions which are

neither almost continuous nor bounded and so forth.

1 e (R\Q)n|0,1
(D) f:0,1] >R, flz)= (R\Q)N0,1]
0 z€Qni0,1]

Then inf U(P, f) =1 and sup L(P, f) = 0. implies f ¢ R[0, 1].

67
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11
(11) /0 7 dt, f(t) = % is not bounded near “0”. However,

/11dt—2(1—1)<2
i <2

Question is should we write

= d = dt =27
— t:su/— t=2"
/0\/5 np L\t

o 1 no ] T
I / —_a / dt = tan~'n < .
) Ty o T4 T =g
Does it suitable to rewrite

oo 1 no ] T
dt = dt = 9
/0 1+ 12 Pl 1t 2

3.3 Measure and measurability

3.3.1 Sigma-algebras and measures

Definition 3.3.1. Let X be a nonempty set. A collection A C P(X) is called a o-algebra
on X if.

(i) X € A;

(i) if £ € A, then E° € A;

(iii) if (Ey)n>1 C A, then U, B, € A.
The pair (X, .A) is called a measurable space. Elements of A are called measurable sets.
Definition 3.3.2. A function p: A — [0, 00] is a measure if p() = 0 and p is countably

additive. The triple (X, A, u) is called a measure space.

3.3.2 Lebesgue outer measure

For open (closed) interval I = (a,b) assign the length ¢(I) = b —a. For I = (a,00) or
(—00,b), we assign £(I) = co. Now, the question is to assign an appropriate length to an
arbitrary subset of R. If O C R is open, then O = U, I,, I,, = (a,,b,) and I,, N I,,, = ( if
n # m. In this case, one can consider £(O) = >_>°, ¢(I,). However,if ACR, AC O CR.
Hence, A C U2, I,. Thus, we have an over-estimate for length of A. that is,

0(A) <> U(I,), such that A C | I,.

n=1
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Therefore, we assign a number to A via

m*(A) := inf {z UL):Ac Lan}

where m*(A) denotes the outer measure of A.

Notice that we do not require disjointness in the cover {I, : n € N} of A. Moreover, I,
could be any type of interval, for example, (a,,b,) or [a,,b,) or [an, b,] or (an, by].

Since ¢ C (0,€),Ve > 0. Then m*(¢) < ¢, Ve > 0. Hence m*(¢) = 0.

For a € R,
{a} Cla=5a+3)

implies m*({a}) <e, Ve>0

implies m*({a}) = 0.

3.3.3 Basic properties of outer measure

(i) If A C B, then m*(A) < m*(B).
Let B C U, I, then A C U, I,,. By definition m*(A) <> ¢(1,,); B C U, In-
implies m*(A) <inf {> ¢(1,) : U, I, D B} implies m*(A) < m*(B).

(i) If {A,}22, is a sequence of subsets in R, then

e {ga)<Ewin

By definition of infimum, for e > 0, 3 a cover {I,,},of A, such that
iy L(Ing) <m*(Ay) + 57 (if m*(A4,) < 00).
Thus, {I,x:k=1,2,...,n=1,2,...} is a cover of J2* | A,.

Therefore,
m* (U An> < Z Zf(]n,k) < Z (m*(An) + ;) < Zm*(An) +e Vex>0.
n=1 n=1k=1 n=1 n=1
Thus,

m* (fj An) <>

n=1

Example 3.3.3. If A C R is countable, then A = {ay,as,...} = U2, {a;}

m*(A) <Y m*({a;}) = 0 implies m*(A) = 0.
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Thus m*(Q) = 0. Alternatively, one can think,
€ €
Qe Y (m = g o+ )

€ €

implies m*(Q) <> ¢ (rn = S Tn + 2|”|+1> = g, Ve > 0.

Proposition 3.3.4. If [ is any interval with end points a and b. Then m*(I) = b — a.

Proof. We prove the result for each type of interval. Suppose I = [a,b] and m*(I) = b—a.
Then for I = (a,b), one can deduce that

€ €
[a+2,b— 2} C (a,b)
€ €
therefore m* ({a + 2 b— 2]) <m*{(a,b)}

that is,
b—a<m*{(a,b)}

Now, (a,b) is a cover of itself, so
m*{(a,b)} < {(a,b)} =b—a

Other covering can be done in similar way. Now, consider the case of proving m*([a, b]) =
b—a.

la,b] C (a—l,b—i-l), Vn > 1
n

n
2

m*([a, b)) <b—a+——b—a
n

On the other hand, suppose [a,b] C U, I,. Then [a,b] C U"_, I, (Exercise)
(Hint: use Bolzano—Weierstrass theorem.)

k
implies (a,b) C | J I,

n=1

By induction,
k
b—a <> U(I,).
n=1
(if a,b] € US_y I, U Iy Then (a,b) € USy I or (a,b) C Ipyr. Thus

k+1

b—a < (1))
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implies b —a < Y ((I,) for {I,};2, that cover [a,b].
n=1

Hence,
b—a<m*(la,b]) <b—a.

Example 3.3.5. Let A C R and z € R. Then for A+ 2z = {a+ 2 :a € A}, we have
m* (A + x) =m*(A).

Let A C U,I,. Then A+ x C U, (I, + x) that is, {I, + 2}>°, is a covering of A + z.
Hence

m (A+z) <> I, +x)=> U1,)

for all cover {I,,} of A. Therefore, m*(A+z) < m*(A). By replacing x — —z, m*(A—x) <
m*(A). Replacing A by A+ z, m*(A) < m*(A+ x). Thus, m*(A+ z) = m*(A), that is,
m* is translation invariant.

Proposition 3.3.6. Let A C R and ¢ > 0. Then 3 an open set O DO A such that
m*(0) < m*(A) + € that is, m*(A) = inf{m*(O) : O D A, O open}

Proof. By definition, for € > 0, 3{I,,} that cover A such that

S UI,) <m*(A)+e (if m*(A) <o0.)
But m* (U 1,) < > U(1,) <m*(A)+e Let O=UI,. Then m*(O) <m*(A)+e. O
Theorem 3.3.7. If A C R, then 3 a Gs-set G C R such that m*(A) = m*(G).

Proof. By the previous result for € = %, 3 an open set O,, D A such that
* * 1
m*(O,) <m (A)+ﬁ
Let G =NO, (a Gs-set in R). Then A C G C O,,. Thus

m(A) < m*(G) < m*(0n) < m*(A) + =

o n
So m*(A) < m*(G) <m*(A) + %, ¥n > 1 implies m*(A) = m*(G) O

Example 3.3.8. Let £ =UFE,, E, C R. Then m*(F) = 0 if and only if m*(E,) = 0 for
all n € N.
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Solution: m*(E) < > m*(E,) If each of m*(E,,) = 0 implies m*(E) = 0.
Conversely, suppose m*(E) = 0 and m*(FE,,) > 0 for some ny € N. Then for € =

tm*(E,,) > 0, 3 a cover {I;;} of E such that

> U(Iy) < m*(E) + ;m*(EnO)

But E,, C E C U} implies m*(E,,) < > {(Ix), that is,

* 1 *
m (Eno) < §m (Eno)

which is a contradiction.

Example 3.3.9. Let O = U1, I, open intervals. Then m*(O) = Y ((1,,).
For € > 0, 3 a cover {J;} of O such that

> U(Iy) <m*(O)+e€ (1)
Now, U1, = O C U Jg. Since I,,’s are disjoint, each [, C Ji p,

implies i o1,) < i U(Jkn) < i (J;) <m*(0)+¢

n=1 n=1 n=1
implies Y ((I,) <m*(O)+e, Ve>0
n=1

implies i ((1,) <m*(0) < i (1)

n=1 n=1

So, m* (nﬁl In> - nie(fn) — S (L),

n=1

Corollary 3.3.10. If {O;}2, is a family of disjoint open sets in R, then

v (o) (§0) -ES 0
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Question 3.3.11. What are all those sets for which m* is countably additive, that is,
m* (U En> => m*(E,)?
n=1 n=1

Example 3.3.12. Suppose G is an open and bounded set in R. Then for Ve > 0, there
exists a compact set K C G such that m*(K) > m*(G) —e.
Since G is bounded, G C [a, §] implies m*(G) < f—a < oco. Further, G is open, therefore

G = J I, implies m*(G) = > _{(I,) < >

So for € > 0, there exists N € N such that

>0 €
> ) <5 (1)
n=N+1
Let
N €
K—nL:Jl|:an+4Na bn_4N:|; In—(me>
Then
N €
m(K) :;m [a"+4]\7’ b”_zuv}
S (e - S =S - €
=3 (00— o) = St - 5
Therefore,
N €
m*(K) = Zf([n) + 3~ 3
n=1
N [e’s)
> UL+ Y, ) —¢
n=1 n=N+1
=m"(G) —¢

Proposition 3.3.13. If [a,b] N [c,d] = 0 then
m*([a,b] U [e,d]) = m*([a, b]) + m*([c, d]).

Proof. Since [a,b] N [¢,d] = 0. Then [a,b] and [c,d] will be separated by some distance
e >0. (Why?)
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Suppose [a,b] U [¢,d] C UI,. Then
la,b] | JI.N(a—e,b+¢e)) =1, (Say)
le,d] c T, N(c—e,d+¢))=JI)] (Say)
Then I/, NI} =0, for all n,m > 1.
implies m”([a, b)) +m” (e, d]) < 3 0(1) + > _U(I)
=Y UL,un)=> H{L,Nn((a—eb+e)U(c—e,d+e))}
m*([a, b)) +m*([c,d]) < iﬁ(ln)

m*([a,b]) +m’([¢,d]) < m*([a,b] U [c,d])
Since m* is countably subadditive, other inequality holds. O]

Observation: If GG is an open and bounded subset of R, then for each € > 0, there is an
open set O and a compact set K such that K C G C O and m*(O) — m*(K) < e.
In general, we fail to write

m*(B\ A) =m*(B) — m*(A)

for A C B (we shall see example later).

3.3.4 Lebesgue measurable sets

A set E C R is said to be Lebesgue measurable, if Ve > 0, there exists open set O and
closed set F' such that
FCECOand m"(O\F)<e

Note: m*(O\ E) <m*(O\ F) <eand m*(F\ E) <m*(O\E) <e.
Thus, one can interpretate that Lebesgue measurable sets are approximately open and
closed.

Proposition 3.3.14. Let M denote the class of all Lebesgue measurable subsets of R.
Then

(1) If E € M, then E° € M. O° C E° C F° and m*(F°\ O°) < e.

(i) If m*(E)=0. Then E € M.

For e > 0, there exist O D E such that m*(O) < 0+¢. Let F be any closed set in
E. Then m*(F) <m*(E) =0.

therefore m*(O \ F) < m*(0O) <e. Thus, E € M.
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(iii) If {E,}22, C M, then E =, E,, € M.

Write E!, = E, \ UZ' E;, then UE!, = UE,, where E!, are pairwise disjoint sets
(that is, E/, N E! =0 for n #m). Thus, without loss of generality, one can assume
E=U FE, E;OE,=0in#m.

Suppose m*(E) < oo, then m* (E,) < m*(E) < co.
Fore>0,3 F, C E, C O, such that m*(O, \ I,,) < 5:. Now,

Zl m(0n) < X m*(On \ ) + 3 m*(Fy)

n=1 n=1
k
<> 2% +m” (U F, [ since F,, is closed and bounded]
n=1 n=1

that is, 30>, m*(0,) < 0o. For e >0, 3 ng € N such that 372, ., m*(O,) <e,.
Let O =2, 0, and F = U2 F,,. Then,

connw((G0)of §.0) (7)
gm*( >+ (n%HO) (sinceAUB\ C = (A\C)uU(B\(O))
<Zm )+ ilm*(on) (F, C E, C O,)
<§1;+s
< 2.

that is, F C E C O and ¥e >0, m*(O \ F) < 2¢ implies E € M.
If m*(E) = oo, write E = Upez EN[k, k4 1) = Upez Ax and can be done in similar
way.

(v) If By, By € M, then E1 UFEy = FE U (Ey\ Ey). But fore > 0,3 0; D E; D F; such
that m*(O; \ F;) < £;1=1,2.
FOT’O:OlUOg, F:F1UF2,

O\ F = U i \ F;) implies m*(O\ F) <
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(EyN Ey)=E{UES e M, since E€ M
implies m*(O\ F) <e, O°C E°C F°
m*(F\O°)=m"(F°'NO) <e
Thus, M is closed under countable union/intersection and complement.
Note: such family of sets is called a o-algebra.
Definition 3.3.15. If 7 C P(R) such that
(i) A€ J implies A¢ € J.
(ii) A; € J implies U2, A; € J, then J is called a o-algebra of sets.
BR)=0c({(a,b): a,b € R, a <b< o0}) (Borel c-algebra)

is the o-algebra generated by countable union and complement of sets of type (a,b) and
a,b < oo.

Proposition 3.3.16. Let a,b € R and a < b, b—a < co. Then I = (a,b) € M.
Proof. For e >0, [a+¢,b—¢] C (a,b) and
m*{(a,b) \ [a +¢&,b—¢]} =m™{(a,a+¢e)U(b—¢,b)} (for small £ > 0)
<m*{(a,a+e)} +m*{(b—¢e,b)}
= 2¢

Since I is open, it follows that (a,b) € M. Now [a,b) = {a} U (a,b) and m*({a}) = 0
implies {a} € M and (a,b) € M. implies [a,b) and [a,b] € M

Thus, any open set O = UJ,, [,, € M. Since M is closed under complement, any closed set
Fe M. O

Example 3.3.17. If A, B C R such that m*(A) = 0. Then m*(AU B) = m*(B).

since m*(AU B) <m*(A) + m*(B) = m*(B) < m*"(AU B)

Proposition 3.3.18. Let x € R and E € M. Thenx+ E € M.

Proof. For € > 0, there exist ' C E C O, O open, F closed such that m*(O \ F) < e.
But F' + z is closed and O + x = U(, + x) is open with F+2 C E+2 C O +z.
Now, m* (O +z\ (F+z)) =m*(O\ F) <e. O

Example 3.3.19. Verify that.
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(i) (F+x)°=F+u.

(i) (O+2)N(F+x)=0NF°+x.
(Hint: z ¢ F + x implies z — x ¢ F implies z — x € F° implies z € F° and so forth).
Theorem 3.3.20. If E =2, E,, E, € M. Then

w (U B = S
n=1 n=1
(i) Suppose E is bounded, then m*(E) < oo implies m*(E,,) < 00.

For e >0, 3F, C E, C O, such that m*(O, \ F,,) < 55.
Now,

R

n=1

k k k
<SS w(E)+ Y 2% <SS mi(F,) +e
n=1 n=1 n=1
(sinceE, = (E, \ F,) UF, C (O, \ F,) UFE,)

Since F,’s are compact (closed and bounded).

z_:lm*(En) < z_:lm*(Fn) +e= (U

implies > m*(E,) <m*(E) <Y m*(E,).

n=1 n=1

Now, suppose E is not bounded. Then, as

R = U (k, k + 1],
k=1
let
Ay = En (k k+1], Eor=E,N(kk+1].
Then
E = U Apg, E, = U E, k.
kez kez

Now,

[e.e]

S m*(B,) < i S (Bu) 1)

n=1
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Since Ay, = U2y Enk, Ak is bounded.

m () = > (B )
therefore im*(En) < kﬁ: m*(Ag) (3)

zl: m*(Ag) =m” ( LlJ Ak) <m*(E), VI>1

k=—1 ke=—l
If m*(E) = oo, okay, identity holds trivially. As

m*(E) <Y m*(E,), letm*(E) < oo,
n=1

implies i m*(Ag) < m*(E) (4)

k=—00

implies i m*(E,) <m*(E) < i m*(E,).

n=1 n=1

3.3.5 The Cantor set

The Cantor set is an uncountable set in [0,1] having zero length with many peculiar
properties, answering some of the difficult questions related to topology of real line.
Let C() = [O, 1]

1 2
¢ 3 3 1
Delete middle one-third open interval J; = (%, %) from Cy. Then
1 2
Cy=10,=]U]=,1
1 [ 9 3] [37 ]
1 2
———s e — |

Delete one-third open interval from each section of C, and let
12 78
=== U=, =
? (9’ 9) (9’ 9)

02:[0

Then,
1 21 2 7 8

,§]U[§,§]U[§,§]U[f 1]

Thus,



3.3. MEASURE AND MEASURABILITY 79

« Cp=10,1], one closed interval of length 1.

« C1=1[0,3]U[2,1], two closed disjoint intervals each of length .
« Co=1[0,5]U[2, 4] U[3, TJU[3,1], four closed disjoint intervals each of length .

By induction, one can construct C,, with 2" disjoint closed intervals each of length 37".

(i) C, is a decreasing sequence of closed and bounded sets, thus C, € M.

(iii

~0 () UG UG U

)
(ii) Let C' =N3>, C,, then C contains all the end-points of the intervals.
) €
(iv) Since C' C Cy, Vn > 0,

Thus, m*(C) = 0.

(v) C is nowhere dense in [0, 1], that is (C)° = (C°) = &

If not so, then C° # @ and x € C°. But C° is open, there exist (y,z) C C° C C,
y < z. Thus, m*{(y, z)} < m*(C) = 0, contradiction.

(vi) Cantor set is uncountable:

Consider the endpoint % € (. One can write

1 0 2 2
—=—4+ =4+ —=+4+...00=(0.222...
3 g g g o=l )3
end point z = % = (0.2)3. Similarly, we shall prove that each endpoint can be
written as
§+?+ oo, a; €4{0,2}.
For this, consider the set
F = {x €0,1]:z=> %, a; € {0, 1,2}} \ {end points}
i=1
For x € F', we have
aq 4 % a9 1.
r=—
3 32

Notice that a; =1 if and only if z € (3, %) if and only if x ¢ C.

(
ay # 1, a, =1 if and only if z € (% %)I_I(%,%) if and only if x ¢ C.
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Thus, if a; = 1 for some ¢, if and only if z ¢ C.
implies C'= {z € [0,1] : x = 7%, &, a; € {0,2}}.
Define f : C'— [0, 1] by

ro-1(X5) -5

Then 4 € {0,1}. Thus f(z) € [0,1].

f is not one-one:

f (;) = f((0.022...)3) = (0.011...)> = (0.1), = ;

and
2 1

£(5) = 10219 = (0:0) = 5

e 1 (2) =12

Exercise 3.3.21. Prove that f(x) = f(y) if and only if x,y are end points of one of the
deleted open interval.

f is an onto map: Here f: C' — [0,1] and let y € [0, 1] such that

f(x) =y = iaizli
i=1

Let

then f(z) = y holds. Thus, f is onto. Therefore, C' is an uncountable set, having outer
measure zero.

3.3.6 Nonmeasurable sets

For x,y € R, define x ~ y if and only if z —y € Q. Then ~ is an equivalence relation on
R. Hence, it partitions R into disjoint equivalence classes.
Let x + Q= {xz+r:r € Q}. Then z + Q is an equivalence class under ~.

0 G+QN01£8  (easy)
(ii) Let E be a subset of [0, 1] that contains exactly one member from each x+@Q, x € R.
Let QN [—1,1] = {ry,ro,...} and write E; = E + 1, 1=1,2,...
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(iil) B;NE; =@, ifi #j.
Ifze B5NE;,then z=ao+r, =y +7;
impliesz —y =7, —1, € Q

So x ~ y, contradiction to the definition of F, as E contains exactly one member
from each x + Q.

(iv) [0,1] C U2, E; C [—1,2].

Let x € [0,1]. Then z + Q must contains a point of . That is, there exists unique
ye(x+QNE, y—zreQn[-1,1]. Thus, y — x = r;, implies x =y — 1y, € Ej,.

The set E is not Lebesgue measurable. On the contrary, if £ € M, then
i=1

1<> m*(E)<3
i=1
which is not possible, because either m*(E) > 0. If m*(E) = 0, then m*(E;) = 0. But
[0,1] CUE; implies 1 < Y- m*(E;) = 0, which is a contradiction.
Remark 3.3.22. (i) m* is not countably additive.
Let A =2, E;. Then 1 <m*(A) < 3. But 22, m*(E;) = oo. Thus,
m’* (U El> <3<oo=)Y m'(E)
i=1 i=1

(ii) Whether m* is finitely additive?

Suppose m* (Ui, 4;) = X1, m*(4;) for any Ay,..., A, € P(R) = power set of R.
(in other words, let m* be finitely additive).

Now,
m*(E) =) _ m"(E;)
i=1
=m* <UE1> <m* (UE) <3
i=1 =1
So,

implies m*(E) = 0, contradiction.

Therefore, m* cannot be finitely additive.
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(iii) Suppose A C E and A € M, then m*(A) = 0.
For this, let A; = A+r;, 7, € QN [—1,1].

Then,

UAclUE c[-1,2]
=1 =1

Since A is Lebesgue measurable, each of A; € M. Thus,

So,

=1

m*(A) < 3 implies m*(A) <

§ ,Vn>1
n’

implies m*(A) =0

We know that m* : P(R) — [0,00]. Restrict m* to M. Then for E € M, we write
m*(E) = m(FE). that is, m*|y =m (say).

Theorem 3.3.23. Let (E,) C M be an increasing sequence of sets. Then

Proof. Let E = U, E,.

Jim m(E, (U E) &)

If m(E) = oo, then some of m(FE,,) = (. Hence (*) holds.

Therefore, suppose m(E,) < oo, ¥n > 1. Since m(F,) is an increasing sequence.

Now,

Thus,

lim m(E,) =supm(E,) < m(E).

n—oo n

e}

E_jl U n+1 \ E

o0

m(E) =m(Er) + > m(En \ Ey)

k

=m(Ey) + lim 3 (m(Eng) — m(E,))

n=1

= lim m(Ey1)
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Theorem 3.3.24. Let (F,) C M be a decreasing sequence of sets such that m(E;) < oco.

Then .
i () = m () B )

Proof. Since m(E,) > m(E,11) > m (N2, En),

Ep\ ﬁl E, = fjl(En \ Eni1) (Exercise)
m <E1 \ Fjl En) = ilm(En \ En—l—l)

implies m <ﬂ En> = I}Lrglo m(Fxi1)

n=1

Alternative: E; \ E, is a increasing in n.

i (5 \ B) = U (53 \ )

n—o0

n—oo

m(Ey) — lim m(E,) =m (El ﬁ E’n>

So,

Exercise 3.3.25. £ € M if and only if £ N (a,b) € M, for all a,b € R.

]

If E € M, it follows immediately that FN(a,b) € M, for any a,b € R, because (a, b) € M.

Suppose E N (a,b) € M, for all a,b € R.

Then EN(k,k+1]=En(k,k+1)U(EN{k+1}) € M (since m*(EN{k+1}) =0).

But E = Upe(E O (k, k + 1)) € M.
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Theorem 3.3.26. £ € M if and only if for all A C R, we have

m*(A) =m*(ANE)+m"(A\ E) (1)
But, proving (*), it is enough to prove

m*(A) >m*(ANE)+m"(A\ E)

Proof. 1f m*(A) = oo, then (1) is true.
Suppose m*(A) < oo, and E € M. Then there exist G5 set G O A such that m*(A) =
m*(G). (since G = N2, Oy)

therefore m*(ANE)+m*(A\E) < m*(GNE)+m*(G\E) = m*"((GNE)U(G\E)) = m*(G) = m*(A).

Now, let (1) holds. Claim: E € M.
First consider m*(E) < co. Then there exist G5 set G such that £ C G and m*(G) =
m*(E) < oo. Since (1) is true for all A C R,

m*(G) =m"(GNE)+m*(G\ F)

that is m*(G) = m*(G) + m* (G \ E)

So, m*(G'\ E) =0 implies G \ F € M.
But G\(G\F) = E implies £ € M. If m*(F) = oo, then, write £ = U,,cz(EN(n,n+1]) =
UnEZ En
We claim that E € M. For this, we all need to prove that if Ey, Ey satisfy (1), then
Ei N Ey satisfies (1). From the bounded case (n,n + 1] € M if and only if (n,n + 1]
satisfies (1)). Thus,

m*(A) =m*(ANE,) +m"(A\ E,)

Since E,, = EN(n,n+1]. Hence, by the bounded case E,, € M. Since F = E,, implies E €
M. Now,
m*(A) =m*(EyNA)+m*(A\ E) (2)

m*(A) = m*(Ex N A) + m*(A\ Ey) 3)
Replace A in (3) by AN E; and A\ E; and use them in (2). Then R.H.S. of (1)
=m" (ExNEy;NA) +m (AN E\ Ey) +m™(Ex N (A\ Ey)) +m*(A\ E; \ Ey)
>m (ExNE;NA)UANE N\ Ey)U(EanN(A\E))U (AN Es\ EY))
> m*(A)  (using (1))

Thus, (Ey U Ey)¢ = Ef N ES will satisfy (1), as (1) is closed under complement. (1) is
called Carathéodory’s criterion of measurability. O
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3.4 Measurable functions and integration

3.4.1 Measurable functions

Let J, = collection of all open subsets of R with respect to the usual metric v on R.

{OCR: 0= L, In=(anbn)}

n=1

and M = class of all Lebesgue measurable subsets of R.

Ji, = collection of all open sets of R with respect to dy — the discrete metric on
R =P(R).
implies J, € M € T4, = P(R).
Since J, is not closed under countable intersections (and complements) of open sets,
implies J, € M and M C J,,, because every subset need not be Lebesgue measurable.
Consider f : (R, 7,) — (R, J,) continuous. Then f~}O) € J,, V O € J, (from range
side).
Now, if f: (R,M) — (R, J,), what happen to f~}(O)? If f is continuous on (R, 7,),
then f~(0O) is open and hence f~}(O) € M.

In addition, consider f(x) = —, = € R\ {0}, then f cannot be made continuous at 0 but
x
f(z) = oo if and only if x = 0. (important!)
If we want to take f(x) = — into consideration, we here to extend the range (—oc, 00) to
x

[—00,00]. Let R = (—00,00) and R = [0, 00]. Therefore, the sets [—o00,a) and (b, o]
for a,b € R should be added to 7,. That is,

Ju=T,U{[—00,a) U (b,0] : a,b € R}

Definition 3.4.1. Let f : (R, M) — (R,J,) is said to be Lebesgue measurable if
fH(0) e M, forall O € J,.

Since O € J, can be expressed as the countable union/intersection of sets of the form
[—00,a) and (b, 0] and M is closed under countable union/intersection, it is enough to
consider O = (b, o0] or [—o0, a).

Thus, f: (R,M) = (R, J,) or R is Lebesgue measurable if f~'{(x, 00|} € M, Va € R.

Proposition 3.4.2. If f: (R, M) — R = [—00,0]|. Then the following are equivalent:
1. fY(a, 0]} € M, for all o € R.
2. fH[a,00]} € M, for all a € R.
3. fH{[-o00,a)} € M, for all a € R.
4 fY[~00,a]} € M, for all a € R,
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5. fH{+oo} € M and f~{(a,b)} € M, for all a,b € R.
Proof. (i) implies (ii):

o0
= N(a—1 ] >z,
n=1
let © ¢ [o,00] impliesa > = > a — l, VYn > 1 implies « = z = «, which is a
contradiction.
Since M is closed under complement, so (ii) implies (ii).
Now, (ii1) implies (iv), because

ﬂ ooa+

(1v) implies (i) as M is closed under complements (since M¢ = M).
Thus, (i) to (iv) are equivalent. Hence,

= Hn o0} e M (by (i)
—o0) =Jf {00, —n)} € M (by (iii))
(a,b) = (a,o00] N [—0o0,b)
implies f~'{(a,b)} € M, Va,beR

Example 3.4.3. Let F € M, define

1 z€F

f@)=xelw) =0 o,

a=0
1>a>0
a>1
a <0

F {(a, 00} =

=R G e BN

Example 3.4.4. f:R — R, f(z) =k is Lebesgue measurable.

g ifa>k

f k-finite. If k = oo, f(x) = 0o, Vz € R. Then f~'{(a,00]} =R.

Notice that for a € R, 3r; € Q such that r; increases to a.

f(x) > a implies f(z) > a >r;, Vj.

So {z: f(r) >a} =N;2{z: f(x) > r;}. Thus, f is Lebesgue measurable if and only
it f~{(r;,00]} € M, for all r; € Q.
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Example 3.4.5. If f, g : R — R be Lebesgue measurable such that f(z)+g(x) # oco— o0,
for any x € R. Then f + g is Lebesgue measurable.
Thus, we need to show the following sets to be Lebesgue measurable.

A={z eR: f(z)+ g(z) = oo}
B={zxeR:00> f(x)+g(z) >a}, YaeckR
A={xeR: f(z) = oo + g(x)} if g(x) are finite (or otherwise)
For z € B, oo > f(x) + g(z) > «, Ir, such that f(z) > r, > o — g(x)

ve |J{z: flx)>r}({z:gle)>a—r})

reQ

implies B= | J{z € R: f(z) > r}[ {z € R: g(z) > a —r}) implies B € M
rcQ

Exercise 3.4.6. {z: f?(x) > a} = {z: f(x) > Va}U{z: —f(z) > a} € M.

Exercise 3.4.7. 4fg = (f +g)* — (f — g)? implies if f, g are Lebesgue measurable, then
12, fg are Lebesgue measurable.

Definition 3.4.8. A property P is called “holding almost everywhere” if the places (or
points) where it false have Lebesgue measure zero, that is, P is true almost everywhere.

m* ({z € R: P is false}) =0
If f = g almost everywhere on R, then
m" ({z e R: f(z) # g(r)}) =0

Example 3.4.9. If f : R — R and f(z) = 0 for almost everywhere x € R, then f is
Lebesgue measurable.
Let B ={z € R: f(z) # 0}, then m*(EF) = 0 implies F, E¢ € M, and so forth.

Proposition 3.4.10. If f, g are Lebesque measurable, then

min{ f, g} — f+9—2\f—9’

sup fn, inf f,,, limsup f,,, liminf f,, limf, are all Lebesque measurable.
Proposition 3.4.11. If f : R — R be such that f(x) # 0, Vo € R, then % is measurable.
Proof.

{x:f(lx)>a}—{x:f(x)>;,a<0}U{x:f(:L‘)<;,oz>0}€M
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3.4.2 Simple functions
Let E; € M and a; € R. Then ¢ = >t a;xE, s called a simple function.
Example 3.4.12. o =1 x[0,1] + 2 X}2,3

Theorem 3.4.13. Let f : R — [0,00| be a measurable function. Then there exist a
sequence (py,) of simple functions such that:

(i) on T and o < f.
(i) ©n — f pointwise.
(iii) on — f uniformly on any set A where f is bounded.
Proof. We first divide the image of f in [0, 2"] into 2%" disjoint parts. k =0,1,2,...,2%" —

([ h)) =B ana s (el =

Then (i) ¢, > 0, (ii) E,x’s are disjoint measurable sets, (i) ¢, T on [0, co].
Claim: ¢, () < @ni1(z).
lfxeE,,= {iE D2 < fz) < 2212112} = Epi00 U Eng12k41-

For z € En+1,2k:7 Spn(m) - 2% - 235—1 - Spn—&—l(x)'
For x € E, 110541, on(z) = % = ops1(T).

If 2 € F,, then z € (F, \ Fps1) U Fopi.

For x € Fyy1, op(r) =2" < 2" =, (7).

For x € F, \ F,41, we have

22n+1 ) 22n+2
n o__ n+l _
2" = on-+1 Sf($)<2 T oon+l
. 2n+1 2n+2 _
that 18, * € En+1722n+1 U e U En+1,22'"‘+2—1‘ Then, On+1 (ZE) € {22n+1 gy 2 ¥l 1 } ThuS,

22n+1
pnl2) = 2" = g < ().

That is, ¢, T and ¢, < f.
(iv) ¢, — [ pointwise.
Let f(z) < oo. Then

{z: f(x) < o0} = @1{3: flx) <2}

Therefore, f(z) < 2", for some n, and hence = € E,, implies ¢, (z) = £

27L
k+1

2n

1
implies 0 < f(x)—pn(x) < o M > 1 implies ¢, — f pointwise.

(*)

k
therefore o < f(z) <
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If f(x) = oo, for some x. Then {z: f(x) = o0} =N {x: f(x) > 2"},
So, @n(x) =2" — 00 = f(x).

(v) @n — f uniformly on a set where f is bounded.

Let E = {x: f(z) < M}. Then, 3ny such that f(z) < 2", ¥n > ny,

Hence, from (*), 0 < f(z) — pn(z) < 52, VR > ng

Notice that ng is free (or unique on F) of x € E. Thus,

1

0 < sup(f(2) = ¢ul2)) < 5 = 0.

Hence, ¢, — f uniformly on E. O

Corollary 3.4.14. If f : R — R is measurable. Then there exists a sequence of simple
functions such that |p,| 1| f| pointwise.

Proof. f = f* — f~. Then there exist ¢} 1 fT and ¢, T f~. That is,
on=n —pp > fT—fT=f

ol = +on < T4+ and foa] TIf]
In this case,
[f=enl=1f"—en +f =9, =0
and o, — f uniformly on £ = {z : |f(z)| < M}. O

Note that,
[T =max{f 0}, f~ =—min{f, 0}.

Adoptions: 0-00 =0, o0-0=0.
Ezample: 0-m(R) =0, co-m(Q) = 0.
Avoidation: co — 00.

3.4.3 The Lebesgue integral
Let ¢ : R — R such that

@:ZanEja Qi € [0700]7
j=1

and £; € M and m(E;) < co. Then we write

/ pdm =Y a;m(E;)).
R o

Remark 1. [ o dm =0 if and only if ¢ = 0.
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Now, if £ € M, then ¢|g = >7", ajXg,nE, hence

/ edm =Y a;m(E; N E)
E

j=1
Notice that (R, M,m) is called Lebesgue measure space. If E € M, then for
Mp={FNE:FeM}, (E,Mgm)

is also a Lebesgue measure space on F.
Remark 2. Since Fy U Ey = (E) \ E2) U (E1 N Ey) U (Ey \ Ey), in the definition of ¢, one
can assume {£; : j =1,2,...,n} is a disjoint family, that is, E; N E; = @ if i # j.

Now, let f : R — [0, 00| be measurable, then there exists a sequence of simple functions
o, T f pointwise. Hence [ ¢, dm 1 sequence in R.
Thus, we define

/ fdm :=sup [ p,dm
R R

n>1

or

/fdm:sup{/godm:gogf}
R R
If f:R — R measurable, then f = f* — f~. We write

/Rfdm:/Rﬁdm—/Rf—dm,

if at least either of [ f*dm or [ f~ dm is finite.
Let
LT (R, M,m)={f:R—1[0,00]: f measurable}

Proposition 3.4.15. For ¢, simple functions in Lt (R, M, m) and ¢ € R = [0, o0],
(i) Jrep =cfre.
(it) Jrlp+v¢)=Jpe+ Jr¥.

(iii) If ¢ < 0, then [ppdm < [y dm.

Proof. (i) is trivial.

(11) Let ¥ = Z;nzl AiXE;s ,l/} = 271;7;1 BkXFk

Notice that by assigning 0 on (U?:1 Ej)c, one can assume that R = U?:1 E;, R =
U?:l Fk-
Then Ej = Urknzl(Ej N Fk), Fk = U?ZI(EJ' U Fk)
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Now,

k=1j=1

> (0 + By)m(E; N Fy) (1)

M=
NE

/(pdm—i-/wdm:

.

Il
—_
=

Il
—

-
WE

i
—_
<.
Il
—_

/(904‘@/1 /Zi:iaj_FﬂkXEﬁdem

= [edm+ [[vam (oy (1))

(ili) If ¢ <4, then o; < By, when E; N F), # @.

/Rgodm S S aym(E; N F) <3S feml(E; 0 Fy) = /wdm.

j=1k=1 j=1k=1

Proposition 3.4.16. If f,g € LT (R, M,m), then for f < g, [z fdm < [z gdm.
For this, let o < f, v simple, then p < g

implies /Rfdm:sup/gpdmgsup/Rgpdm:/Rgdm.

e<fJR 0<g

Proposition 3.4.17. If f,g € LT (R, M,m), then

/R(f—f—g)dm:/Rfdm—l—/Rgdm.

(We prove it later!)

3.5 Convergence theorems and L? spaces

3.5.1 Monotone convergence theorem

Theorem 3.5.1 (Monotone Convergence Theorem). Let f,, f € LT(R, M, m) be such
that f, T f pointwise. Then

dm = 1i /nd.
[ Fdm=lim [ f,dm
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Proof: Since f,, < f,41 < f, the limit of [ f,, will be bounded above by [ f. Hence,

fi [ s [

In order to show the other inequality, it is enough to show that for each € > 0,

dm [ fo=0-q [ f,
JL%AfnZ(l—E)Aw-

Let E, = {x € R: fu,(z) > (1 — €)p(zx)}. Since f, T f, E, C E,41. Moreover,
R = U2, E,. For, let x € R, then f,(x) 1T f(x), and so for some n, f,(x) > (1 — €)p(x).
If not, f,.(z) < (1 —€)p(x) for all n, so f(z) < (1 —e€)p(x), ¢ < f = Contradiction. Let
v(Ey,) = Jg, v. Then v becomes a measure on (R, M) and E,, T R. Hence,

or for p < f,

lim v(E,) = v(R).

n—oo

(l—e/gp—nhoo/ 1—egp<nhoo/ fn_nh_{rolo/an

Remark 3.5.2. f,, T f is necessary in monotone convergence theorem.

Thus,

1
Example 3.5.3. f, = =X, — 0.
n

/fndm: 1 %O:/limfndm.
R R
Example 3.5.4. Verify MCT for f, : R — [0, o0], given by.
(1) fn = X(n,n+1)-
(ii) Jn = 'X(0,1)-

Remark 3.5.5. Integration is a linear map on LT(R, M,m), that is, f — [p fdm is
linear.
Let f,g € LT(R, M, m). Then there exists ¢, T f and ¢, T g. By MCT,

L +gydm = lim [ (o + ) dm
R n—oo R

= lim (/ gpndm—i-/l/)ndm)
n—oo R R
:/fdm—l—/gdm.
R R
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Example 3.5.6. For E € M, and f € LT (R, M, m), if [, fdm = 0, then f = 0, provided
m(E) > 0.

/ fdm =sup [ ¢ =0 implies / © = 0 implies ¢ = 0.
E p<fJE E

Corollary to MCT: Let f,,f € LT(R, M, m) be such that f,, 1 f pointwise almost

everywhere on R. Then
/fdm: lim/fndm.
R n—oo R

Proof. Let f, T f pointwise on A, then m*(A°) = 0. So, A, A° € M. That is, xgf, —

xef. By MCT,
/XAf = nlijgo/XAfn
implies /fdm: lim / frndm.
A n—oo J A
Now,

/Rfdm:/Afdm+/Acfdm:nli_}rrolo/Afnder/Acfndm

dm = 1i /nd
= Jim [ g

Thus,

Theorem 3.5.7. Let f € LT (R, M, m). Then
/Rfdm =0 if and only if f =0 almost everywhere on R.
Proof. For f = =37 ajXg,
/Rgpdm = 0 if and only if either a; =0 or m(E;) =0, Vj=1,2,....,n
that is /R wdm = 0 if and only if p =0 almost everywhere
Now, if f = 0 almost everywhere,

/ fdm=sup [ pdm =0 (by previous case)
R e<f /R

Suppose [ fdm = 0. Then consider

E:{:L‘E]R:f(m)>0}:G{xGR:f(x)>i}:©En (say).

Now, m(E,) :nfEn%dmSnfEnfdmgnfRfdm:O.
Thus, m(E) = 0 implies f = 0 almost everywhere O
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3.5.2 Fatou’s lemma

Lemma 3.5.8 (Fatou’s Lemma). Let f, € LT(R, M, m). Then

/mfndmsm/ Fudm
R R

Proof. Let g = inf, > f,. Then gy < f;, for all j > k. Thus, [ gr < infj>y [ fj-
Now,

gk T sup (Tileﬁ fn)

k>1

By the Monotone Convergence Theorem (MCT),

/@fndm:/ lim g dm = lim/gkdmg lim inf/fjdm
R R k—oo k—oo JR k R

—00 j>k

Remark 1: Strict inequality can hold.
For f, = %X[O,n] — 0 uniformly, then [plimf, dm =0 < 1= lim [; f, dm.

Remark 2: Fatou’s Lemma need not hold beyond non-negative functions.

Example 3.5.9. let f, = _%X[n,2n]> Vn > 1.
Now, inf,>y, fu(x) = infy,>p {_%} S

sup (122 fn(x)> =0 thatis limf,(x)=0

k>1
/limfn:O > -1 :hm/ fo.
R R

Let f: (R, M,m) = R = [~00,00] be measurable. Then f = f* — f~ and fT, f~ are

L-measurable.

Definition 3.5.10. If [ f*dm < oo and [ f~dm < oo both hold, then we say f is

integrable, and
/fdmz/f*dm—/f‘dm
R R R

Since |f| = fT + f~. Tt follows that [; f dm is finite if and only if [ | f| dm is finite.
Let

Ll(R,M,m):{f:R%]R:f measurable and /R|f\<oo}

We also use the symbols L'(R) or L'(R,m) or L'(R, M, m).
Notice that L' is a linear space over R.
Since

/ |f] = 0 if and only if |f| = Oalmost everywhere if and only if f = Oalmost everywhere
R
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If we adopt f = 0 if and only if f = 0 almost everywhere Then L'(R, M,m) is a normed
linear space with || f|l = [z |f| dm.

Proposition 3.5.11. If f € L'(R, M,m), then

[ fam| < [ 1f1dm

Proof.

-

/Rerdm—/Rf_dm‘g /Rf+dm‘+’/Rf—dm‘:/Rf+dm+/Rf-dm:/R|f|dm
0

3.5.3 Chebyshev’s inequality
Let f € LY(R, M, m). Then m ({z € R: |f(z)| > a}) < |||

Proof.

1 1 1 1
the left-hand Side:—/ adn < — ]f(x)]dmg—/\f(x)|dm:—HfH1
o i f@)>a a Jiwp@)>a) a Jr a

]

Corollary 3.5.12. If f € L*(R,M,m), then m{z € R : |f(x)] = oo} = 0 that is, an
L-function is almost finite.

Proof. m{z : |f(x)| = oo} = m{Nz : | ()] > n}}. But m{z: |f(x)| > n} < L|f]1.
So, m{xz : |f(z)] = oo} < m{x : |f(x)] = n} < L flli = 0as n — oc. O

3.5.4 Dominated convergence theorem

Theorem 3.5.13 (Dominated Convergence Theorem). Let f, : (R, M,m) — R be a
sequence of measurable functions such that

(i) fu(x) — f(z) pointwise, for all x € R.
(ii) |fu| < g € L' (R, M, m).

Then
/fdm: lim/fndm
R n—oo R
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Proof. Since f,, — f pointwise and |f,,| < g € L*(R, M, m),
implies | f,| — |f| implies |f| < g € L' implies f € L'

Now,
0<g+ f,— g+ [ pointwise

0<g—f,—g—f pointwise

By Fatou’s Lemma,

L+ fyam= [ lim(g+ fu)dm <lim [ (9 fo) dm

implies /Rfdm < liim/an dm (sz’nce/Rg < 0)

Similarly,
_ — ; _ < 1 _
/R(g f)dm /Rgglgo(g fn)dm_him/R(g fn) dm
—/fdmg—m/ £, dm
R R
. > I
that is /Rfdm > hm/an dm

So,

M/fndmé/fdeM/fndm
R R R

implies lim/an = /Rf.

Exercise 3.5.14. Verify the Dominated Convergence Theorem for f, : (R, M,m) — R,
where

(i) Jn = nX[O,%]'
(11> fn = %X[n,n-{-l}-
(i) fu = Xpnr1)-



3.5. CONVERGENCE THEOREMS AND L? SPACES 97

3.5.5 Bounded convergence theorem

Theorem 3.5.15 (Bounded Convergence Theorem). Let E € M and 0 < u(E) < co. If
fo, [ (B, Mg, m) — R be such that

(i) |fu(x)| < M, Vn € N,Vz € E.
(ii) fn — [ pointwise.
Then

fo = o [

[l < [ M = Mm(E) < o0

So, f, are dominated by M. And by Dominated Convergence Theorem,

fod = Jim [ 1

Theorem 3.5.16. If f is bounded. Then f € Rla,b] if and only if f is continuous on
la,b] almost everywhere, that is, there ezists g : [a,b] — R continuous such that f = g
almost everywhere.

Proof.

]

Theorem 3.5.17. Every Riemann integrable function is Lebesgue integrable, that is,
Rla,b] C L'a,b)].

If f € Rla,b], then f = g almost everywhere, where g is continuous on [a,b]. Therefore,
g is measurable and hence f is measurable.

If f € Rla,b], then

ir]%f UP, f)= /‘Lbf(w) dz
sup L(P, f) = /abf(fl?) dx
both exist and are equal to ff f(z)dz. But for ;besgue integration, we only want
sgpL(P, f)= /fdm

Hence f € Rla,b] implies f € L']a,b].

(Note that this is just an intuition and not a proof.)
Theorem 3.5.18. Let f € Ra,b]. Then f € L']a,b] and
b

fdm = / fa) de

[a,b]
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Proof. Let I = [a,b] and f € R(I), then there exists an increasing sequence of partitions

P, of I such that
b

lim U(P,, f) = lim L(P,, f) = / f(a)da.

a

For a partition P of [a, b], denote

k
Yp = ZMjX(t]’—lyt]’h Mj = Sup f<x>

j=1 [tj—1.t5]
and
k
VYp = ijx(tj—htﬂ’ m; = inf f(x)v
— [tj—1:t5]
7j=1

WhereP:{a:t0<t1 <"'<tj_1<tj <tk:b}
Then ¢p | sequence and 1p 1 sequence. Since f € R(I), IM,m > 0 such that m <
f(xz) < M but then

m < ¢p,(x) < f(x) < @p,(x) <M (1)
For each fixed © € I, pp, (x) | sequence bounded below by m and ¥p, (z) 1 sequence
bounded above by M. Let

lim op, (2) = ¢(z),  lim Pp,(2) = ¥(z)
Then
m < Y(x) < fz) < pla) <M (2)

Then ¢ and ¢ being limit of simple functions are measurable.
By Bounded Convergence Theorem,

b
/cpdm: lim /gondm: lim U(P,, f) :/ f(z)dx
I n—oo Jr n—o0 a
Similarly,
b
/@/}dm: lim /% dm = lim L(P,, f) :/ f(a)de
I n—oo Jr n—00 a
Therefore

/(gp —)dm = 0 if and only if ¢ — 1 =0 almost everywhere (since ¢ —1 > 0)
I
From ¢(x) < f(z) < ¢(z) almost everywhere. So f(z) = ¥(z) almost everywhere implies

f is measurable. Thus,
/fdm:/wdm:/bf(x)dx
1 I a

Note: Rla,b] & L'a,b]. Since f = x@onp.1, Joyfdm = 1 but L(P, f) = 0 and
U(P, f) =1, VP. O
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