DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA211(Minor): Real Analysis
Instructor: Rajesh Srivastava
Time duration: 1.5 hours

Quiz - I
September 7, 2022
Maximum Marks: 10
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist a continuous function f from $\{(x, y):|x| \leq 1$ and $1 \leq y \leq 2\}$ onto \mathbb{R}^{2} ?
(b) Is it possible that for every open set $O \subset \mathbb{R}^{2}$ and for every function $f: O \rightarrow \mathbb{R}$ with $f_{x}(X)=f_{y}(X)=0$ for all $X \in O$, implies that f is constant on O ?
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y}{x^{2}-y^{2}} & \text { if } x^{2} \neq y^{2}, \\ 0 & \text { otherwise }\end{array}\right.$

Determine all possible directions along which f has directional derivative at $(0,0)$.
3. Prove /disprove that $A=\left\{\left(x, \frac{1}{x}\right): x \neq 0, x \in \mathbb{R}\right\}$ is closed. What is the closure of A if it is not closed?
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be satisfying $\|f(X)-f(Y)\| \leq \frac{1}{2}\|X-Y\|$ for every $X, Y \in \mathbb{R}^{n}$. Show that the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $g(X)=X-f(X)$ is injective.
5. Let $\mathbb{D}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}<1\right\}$. Define a function $f: \mathbb{D} \rightarrow \mathbb{R}$ by $f\left(x_{1}, x_{2}\right)=$ $\sin \left(x_{1}^{2}+x_{2}\right)$. Show, by using appropriate MVT, that $|f(X)-f(Y)| \leq \sqrt{5}\|X-Y\|$ for every $X, Y \in \mathbb{D}$.

