DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA211(Minor): Real Analysis Instructor: Rajesh Srivastava Time duration: 1.5 hours Quiz - II November 16, 2022 Maximum Marks: 10

 $\mathbf{2}$

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If (x_n) is a Cauchy sequence in (\mathbb{R}, u) , does it imply that $\sin(x_n)$ is a Cauchy sequence in (\mathbb{R}, u) ?
 - (b) Let $A_n = \{(x,y) \in \mathbb{R}^2 : 0 < \frac{1}{x} < y < \frac{1}{n}\}$. Whether the set $\bigcap_{n=1}^{\infty} A_n$ is open/closed?
- 2. Examine for $d(x, y) = \frac{|x y|}{1 + |xy|}$ defines a metric on \mathbb{R} .
- 3. Define a metric d on X = (0, 2] by $d(x, y) = \left|\frac{1}{x} \frac{1}{y}\right|$. Show that (X, d) is a complete metric space.
- 4. Find the point-wise limit of the sequence $f_n(t) = e^{-nt^2} \sin nt$. Examine for uniform convergence of f_n on \mathbb{R} .
- 5. Let $f: [0,1] \to [0,1]$ be such that $|f(x) f(y)| \le \frac{1}{4}|x-y|$ and $g(x) = \frac{1}{8}x^2 f(x)$ for all x and y in [0,1]. Show that there exists a unique x_o in [0,1] such that $f(x_o) = -x_o + \frac{1}{8}x_o^2$.

END