DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA211(Minor): Real Analysis
MidSem
Instructor: Rajesh Srivastava
September 25, 2022
Time duration: 02 hours
Maximum Marks: 30
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, which is differentiable only at one point in \mathbb{R}^{2} ?
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist. Does it imply that f has derivative at $(0,0)$ along $y=x$?
(c) Whether $\varphi(x)=\frac{1}{3} x \sin x$ is a contraction mapping on the interval $(0,1)$?
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left\{\begin{array}{cl}\frac{x y^{2}}{x^{2}-y} & \text { if } x^{2} \neq y, \\ 0 & \text { otherwise }\end{array}\right.$

Determine all possible points in \mathbb{R}^{2} where f is differentiable.
3. Let $f:[1,2] \rightarrow[0,1]$ be defined by $f(x)=(2-x) \sin \frac{\pi}{2 x}$. Find all possible fix points for f.
4. For a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$, define $F(x, y)=\int_{x}^{y} g(t) d t$. Show that F is differentiable on \mathbb{R}^{2} and find its derivative. Whether F is a bounded function always?
5. Let $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $A(x, y)=(2 x+y, x+2 y)$. Find the norm of A.
6. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function and let $f(x, y)=x e^{g(y)}$. Show that f is not injective on \mathbb{R}^{2}.
7. Find all possible points $(x, y) \in \mathbb{R}^{2}$ where $f(x, y)=\left(x^{3}+x+\cos x, y^{3}\right)$ is locally injective.
8. Let $f(x, y)=\left(2 x^{2}+y, x-2 y^{2}\right)$ and $g(x, y)=\left(2 x+y e^{x}, 2 y+x e^{y}\right)$. Show that $g^{-1} \circ f$ is differentiable at $(0,0)$ (with meaningful justification of g^{-1} exists) and find the value of $\left(g^{-1} \circ f\right)^{\prime}(0,0)$.
9. Show that equation $e^{x}+y-2 \cos (x y z)=0$ can be solved for x in terms of y and z in some neighborhoods of $(0,1,1)$ in \mathbb{R}^{3}. Whether this equation is solvable for z in terms of x and y in a neighborhood of $(0,1,1)$ in \mathbb{R}^{3} ?

