DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA211(Minor): Real Analysis Instructor: Rajesh Srivastava Time duration: 02 hours MidSem September 25, 2022 Maximum Marks: 30

3

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a function $f : \mathbb{R}^2 \to \mathbb{R}$, which is differentiable only at one point in \mathbb{R}^2 ?
 - (b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that $f_x(0,0)$ and $f_y(0,0)$ both exist. Does it imply that f has derivative at (0,0) along y = x?
 - (c) Whether $\varphi(x) = \frac{1}{3}x \sin x$ is a contraction mapping on the interval (0,1)? **1**
- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = \begin{cases} \frac{xy^2}{x^2 y} & \text{if } x^2 \neq y, \\ 0 & \text{otherwise.} \end{cases}$

Determine all possible points in \mathbb{R}^2 where f is differentiable.

- 3. Let $f : [1,2] \to [0,1]$ be defined by $f(x) = (2-x) \sin \frac{\pi}{2x}$. Find all possible fix points for f.
- 4. For a continuous function $g : \mathbb{R} \to \mathbb{R}$, define $F(x, y) = \int_x^y g(t) dt$. Show that F is differentiable on \mathbb{R}^2 and find its derivative. Whether F is a bounded function always?
- 5. Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by A(x, y) = (2x + y, x + 2y). Find the norm of A.
- 6. Let $g : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function and let $f(x, y) = x e^{g(y)}$. Show that f is not injective on \mathbb{R}^2 .
- 7. Find all possible points $(x, y) \in \mathbb{R}^2$ where $f(x, y) = (x^3 + x + \cos x, y^3)$ is locally injective.
- 8. Let $f(x, y) = (2x^2 + y, x 2y^2)$ and $g(x, y) = (2x + ye^x, 2y + xe^y)$. Show that $g^{-1} \circ f$ is differentiable at (0, 0) (with meaningful justification of g^{-1} exists) and find the value of $(g^{-1} \circ f)'(0, 0)$.
- 9. Show that equation $e^x + y 2\cos(xyz) = 0$ can be solved for x in terms of y and z in some neighborhoods of (0, 1, 1) in \mathbb{R}^3 . Whether this equation is solvable for z in terms of x and y in a neighborhood of (0, 1, 1) in \mathbb{R}^3 ?