DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA211(Minor): Real Analysis Instructor: Rajesh Srivastava Time duration: 03 hours End Semester Exam November 29, 2022 Maximum Marks: 50

 $|\mathbf{1}|$

|2|

3

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a set $A \subset \mathbb{R}$ such that outer measure of $\overline{A} \setminus A^{\circ}$ is infinite? 1
 - (b) Let X = C[0, 1]. Is it necessary that $f_n \to f$ in $(X, \|\cdot\|_1)$ implies $f_n \to f$ in $(X, \|\cdot\|_\infty)$?
 - (c) Let $f, g : \mathbb{R} \to \overline{\mathbb{R}}$ be such that $\{x \in \mathbb{R} : f(x) = \pm \infty\}$ and $\{x \in \mathbb{R} : g(x) = \pm \infty\}$ are Lebesgue measurable. Does it imply that $\{x \in \mathbb{R} : (fg)(x) = \pm \infty\}$ is Lebesgue measurable?
 - (d) Does there exists an open and unbounded set A in \mathbb{R} such that m(A) = 2? $|\mathbf{1}|$
 - (e) Let $C \subset [0,1]$ be the Cantor set, and define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in C; \\ \frac{1}{x} & \text{if } x \notin C. \end{cases}$$

Whether f is a Lebesgue measurable function?

- 2. Let $A \subset (1, \infty)$ be a closed set. Show that A^2 is a closed set.
- 3. Let $1 \le p \le \infty$ and d_i ; i = 1, 2 be two metric on a non-empty set X. Show that $d_p = (d_1^p + d_2^p)^{1/p}$ is a metric on X for $1 \le p < \infty$. Whether $d_{\infty} = \max\{d_1, d_2\}$ is a metric on X?
- 4. For $x, y \in \mathbb{R}$, define $d(x, y) = \min\{1, \sqrt{|x y|}\}$. Examine for (\mathbb{R}, d) to be a complete metric space. 3
- 5. For $x = (x_n) \in l^2$, write $||x|| = \left(\sum_{n=1}^{\infty} a_n |x_n|^2\right)^{1/2}$. Find all possible sequences (a_n) such that $|| \cdot ||$ is a norm on l^2 .
- 6. Let $f_n, f : \mathbb{R} \to (0, \infty)$ be such that $f_n \to f$ uniformly on \mathbb{R} . Examine for $e^{f_n} \to e^f$ uniformly on \mathbb{R} .
- 7. Let $f_n(t) = \sqrt{t^2 + n}$. Examine for the uniform convergence of f'_n on \mathbb{R} .
- 8. Let $X = [-1,1] \times [-1,1]$. Define $\varphi : (X, \|\cdot\|_2) \to (X, \|\cdot\|_2)$ by $\varphi(x,y) = (x \sin \frac{y}{3}, y \cos \frac{x}{3})$. Show that there exists a unique point $(x_o, y_o) \in X$ such that $\varphi(x_o, y_o) = (x_o, y_o)$.

- 9. Let A be an arbitrary unbounded subset of in \mathbb{R} . Show that for any $\epsilon > 0$ there does not exist a compact set $K \subset A$ such that $m(A \smallsetminus K) < \epsilon$.
- 10. Let A be a Lebesguee measurable subset of \mathbb{R} . Show that A + (0, 1] is Lebesguee measurable.
- 11. Let $E \subset \mathbb{R}$ be such that $m^*(E) < \infty$. Let $m^*(A) = m^*(A \cap E) + m^*(A \setminus E)$ for each $A \subseteq \mathbb{R}$. Show that for each $\epsilon > 0$ there exists an open set O containing E such that $m^*(O \setminus E) < \epsilon$. Does the same conclusion holds true if $m^*(E) = \infty$?
- 12. For Lebesgue measurable sets $A, B \subset [0, 1]$, define $f(x) = \inf\{|x (a + b)| : a \in A, b \in B\}$. Show that f is continuous on \mathbb{R} . Further, if m(A) + m(B) > 1, then show that f(1) = 0.
- 13. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \sup\{|x y| : y \in [0, 1]\}$. Show that f is Lebesgue measurable.
- 14. Let *E* be a non-measurable subset of \mathbb{R} , and let $f = \chi_E$. Suppose *g* is a strictly monotone function on \mathbb{R} . Prove/disprove that $g \circ f$ is Lebesgue measurable. 2
- 15. Let $f_n(t) = \sin t \, e^{-nt^2}$. Find the value of $\lim_{n \to \infty} \int_{\mathbb{R}} f_n dm$. 3
- 16. $f: \mathbb{R} \to [0,\infty]$ be Lebesgue measurable and $\int_{\mathbb{T}} f dm < \infty$. Show that

$$\int_{\mathbb{R}} \left(\sum_{n=1}^{\infty} f\left(2^n x + \frac{1}{n} \right) \right) ds < \infty.$$

3

END