DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA211(Minor): Real Analysis
Instructor: Rajesh Srivastava
Time duration: 03 hours

End Semester Exam
November 29, 2022
Maximum Marks: 50
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist a set $A \subset \mathbb{R}$ such that outer measure of $\bar{A} \backslash A^{\circ}$ is infinite? 1
(b) Let $X=C[0,1]$. Is it necessary that $f_{n} \rightarrow f$ in $\left(X,\|\cdot\|_{1}\right)$ implies $f_{n} \rightarrow f$ in $\left(X,\|\cdot\|_{\infty}\right)$?
(c) Let $f, g: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ be such that $\{x \in \mathbb{R}: f(x)= \pm \infty\}$ and $\{x \in \mathbb{R}: g(x)= \pm \infty\}$ are Lebesgue measurable. Does it imply that $\{x \in \mathbb{R}:(f g)(x)= \pm \infty\}$ is Lebesgue measurable?
(d) Does there exists an open and unbounded set A in \mathbb{R} such that $m(A)=2$? 1
(e) Let $C \subset[0,1]$ be the Cantor set, and define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in C ; \\ \frac{1}{x} & \text { if } x \notin C .\end{cases}
$$

Whether f is a Lebesgue measurable function?
2. Let $A \subset(1, \infty)$ be a closed set. Show that A^{2} is a closed set.
3. Let $1 \leq p \leq \infty$ and $d_{i} ; i=1,2$ be two metric on a non-emply set X. Show that $d_{p}=\left(d_{1}^{p}+d_{2}^{p}\right)^{1 / p}$ is a metric on X for $1 \leq p<\infty$. Whether $d_{\infty}=\max \left\{d_{1}, d_{2}\right\}$ is a metric on X ?
4. For $x, y \in \mathbb{R}$, define $d(x, y)=\min \{1, \sqrt{|x-y|}\}$. Examine for (\mathbb{R}, d) to be a complete metric space.
5. For $x=\left(x_{n}\right) \in l^{2}$, write $\|x\|=\left(\sum_{n=1}^{\infty} a_{n}\left|x_{n}\right|^{2}\right)^{1 / 2}$. Find all possible sequences $\left(a_{n}\right)$ such that $\|\cdot\|$ is a norm on l^{2}.
6. Let $f_{n}, f: \mathbb{R} \rightarrow(0, \infty)$ be such that $f_{n} \rightarrow f$ uniformly on \mathbb{R}. Examine for $e^{f_{n}} \rightarrow e^{f}$ uniformly on \mathbb{R}.
7. Let $f_{n}(t)=\sqrt{t^{2}+n}$. Examine for the uniform convergence of f_{n}^{\prime} on \mathbb{R}.
8. Let $X=[-1,1] \times[-1,1]$. Define $\varphi:\left(X,\|\cdot\|_{2}\right) \rightarrow\left(X,\|\cdot\|_{2}\right)$ by $\varphi(x, y)=$ $\left(x \sin \frac{y}{3}, y \cos \frac{x}{3}\right)$. Show that there exists a unique point $\left(x_{o}, y_{o}\right) \in X$ such that $\varphi\left(x_{o}, y_{o}\right)=\left(x_{o}, y_{o}\right)$.
9. Let A be an arbitrary unbounded subset of in \mathbb{R}. Show that for any $\epsilon>0$ there does not exist a compact set $K \subset A$ such that $m(A \backslash K)<\epsilon$.
10. Let A be a Lebesguee measurable subset of \mathbb{R}. Show that $A+(0,1]$ is Lebesguee measurable.
11. Let $E \subset \mathbb{R}$ be such that $m^{*}(E)<\infty$. Let $m^{*}(A)=m^{*}(A \cap E)+m^{*}(A \backslash E)$ for each $A \subseteq \mathbb{R}$. Show that for each $\epsilon>0$ there exists an open set O containing E such that $m^{*}(O \backslash E)<\epsilon$. Does the same conclusion holds true if $m^{*}(E)=\infty$?
12. For Lebesgue measurable sets $A, B \subset[0,1]$, define $f(x)=\inf \{|x-(a+b)|: a \in$ $A, b \in B\}$. Show that f is continuous on \mathbb{R}. Further, if $m(A)+m(B)>1$, then show that $f(1)=0$.
13. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sup \{|x-y|: y \in[0,1]\}$. Show that f is Lebesgue measurable.
14. Let E be a non-measurable subset of \mathbb{R}, and let $f=\chi_{E}$. Suppose g is a strictly monotone function on \mathbb{R}. Prove/disprove that $g \circ f$ is Lebesgue measurable.
15. Let $f_{n}(t)=\sin t e^{-n t^{2}}$. Find the value of $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m$.
16. $f: \mathbb{R} \rightarrow[0, \infty]$ be Lebesgue measurable and $\int_{\mathbb{R}} f d m<\infty$. Show that

$$
\int_{\mathbb{R}}\left(\sum_{n=1}^{\infty} f\left(2^{n} x+\frac{1}{n}\right)\right) d s<\infty
$$

