DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA1501H (CSE): Multivariable Calculus

Instructor: Rajesh Srivastava

November 18, 2025

Duration: 03:00 hours

Maximum Marks: 45

Note: Answers lacking rigorous justification will not be awarded marks.

- 1. (a) Whether the interior of $\{(x, \sin \frac{\pi}{x}) : x \neq 0 \text{ and } x \in \mathbb{R}\}$ is non-empty in \mathbb{R}^2 ?
 - (b) Whether the set $\{(x, \frac{1}{x}) : x \neq 0 \text{ and } x \in \mathbb{R}\}$ is closed in \mathbb{R}^2 ?
 - (c) Whether (0,0) is a saddle point of the function $f(x,y) = (x-y)(x-y^2)$?
- 2. Show that the content of the set $\{\frac{1}{n} : n \in \mathbb{N}\}$ in [0,1] is zero.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 - y^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{otherwise.} \end{cases}$$

Find all possible directions along which f has directional derivatives at (0,0).

4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} x^2 y^2 \frac{x-y}{x^2 + y^2} & \text{if } x^2 + y^2 \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Examine whether $f_{xy}(0,0) = f_{yx}(0,0)$.

5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} \sin\left(\frac{1}{x^2 + y^2}\right) & \text{if } x^2 + y^2 \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is continuous at (0,0).

6. Let
$$A = \int_0^1 e^{-x^2} dx$$
. Show that $\int_0^1 \int_0^x e^{-t^2} dt dx = A + \frac{1}{2} \left(\frac{1}{e} - 1 \right)$.

7. Let f(x, y, z) = xyz and $S = \{(x, y, z) : x^2 + y^2 + z^2 = 6\}$. Use Lagrange multiplier method to find maximum and minimum values of f on S.

- 8. Evaluate the double integral $\iint_D \sqrt{x+y}(y-2x)^2 dy dx$ over the domain D bounded by $x=0,\ y=0,\ {\rm and}\ x+y=1.$
- 9. Let C be the intersection of the cylinder $x^2 + y^2 = 1$ with plane x + 2y + 3z = 3 which is parameterised by R. Let F be a vector field with $curl F = i + 2j \alpha k$ for some $\alpha \in \mathbb{R}$. If $\oint_C F \cdot dR = -\frac{3\pi}{2}$, then find α .
- 10. Evaluate the line integral $\oint_C 2xyzdx + x^2zdy + x^2ydz$, where C is parametrised by $R(t) = \cos t \, i + \frac{t}{2\pi} \, j + \sin t \, k$, $0 < t < \frac{\pi}{2}$.
- 11. Find the area of the surface z = 2xy inside the cylinder $x^2 + y^2 = 2$.
- 12. Evaluate the line integral $\oint_C xydx + 2x^2dy$, where C is the line joining (-2,0) and (2,0) and the upper half of the circle $x^2 + y^2 = 4$.

——End——