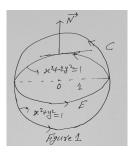
MA15010H: Multi-variable Calculus

(Practice problem set 7 Hint/ Model solutions: Line and surface integrals) September - November, 2025

1. Let \vec{N} be the unit outward normal vector on the ellipse $x^2 + 2y^2 = 1$. Evaluate the line integral $\int\limits_C \vec{N} . d\vec{R}$ along the unit circle $C = \{(x,y): \ x^2 + y^2 = 1\}$.

Solution: The ellipse $x^2 + 2y^2 = 1$ can be represented by $E(t) = \left(\cos t, \frac{\sin t}{\sqrt{2}}\right)$ with $0 \le t < 2\pi$. This implies that normal vector to E will be $(y'(t), -x'(t)) = \left(\frac{\cos t}{\sqrt{2}}, \cos t\right)$. Hence the unit normal vector $\vec{N}(t) = \sqrt{\frac{2}{3}} \left(\frac{\cos t}{\sqrt{2}}, \cos t\right)$. Let C be represented by $R(t) = (\cos t, \sin t)$, $0 \le t < 2\pi$. Please refer to Figure 1.



Thus,

$$\int\limits_{C} \vec{N}.\vec{dR} = \sqrt{\frac{2}{3}} \left(\frac{\cos t}{\sqrt{2}}, \cos t \right).(-\sin t, \cos t)dt.$$

2. Use second fundamental theorem of calculus for the line integral to show that $\int_C y dx + (x+z)dy + ydz$ is independent of any path C joining the points (2,1,4) and (8,3,-1).

Solution: Let F(x,y,z) = (y,x+z,y). Consider f(x,y,z) = xy + yz + c. Then $\nabla f(x,y,z) = F(x,y,z)$. Hence, by second FTC for line integral

$$\int_{C} \nabla f \cdot dR = f(2, 1, 4) - f(8, 3, -1).$$

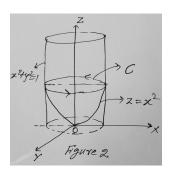
That is, the given line integral is path independent. Note that one can $\nabla f = F$ for f by doing indefinite integral.

3. Consider the curve C which is the intersection of the surfaces $x^2 + y^2 = 1$ and $z = x^2$. Assume that C is oriented counterclockwise as seen from the positive z-axis. Evaluate $\int z dx - xy dy - x dz$.

Solution:

Let F(x, y, z) = (z, -xy, -x). The cylinder $x^2 + y^2 = 1$ can be parameterized as $\{(\cos \theta, \sin \theta, z) : 0 \le \theta < 2\pi, z \in \mathbb{R}\}.$

Since C also lies in $z = x^2$, this implies $C = \{(\cos \theta, \sin \theta, \cos^2 \theta) : 0 \le \theta < 2\pi\}$. Please see the Figure 2.



The required line integral is

$$\int_{C} f \cdot dR = \int_{0}^{2\pi} f(R(\theta)) \cdot R'(\theta) d\theta = 0.$$

- 4. Let $f(x, y, z) = (x^2, xy, 1)$. Show that that there is no ϕ such that $\nabla \phi = f$. **Solution:** If there exists ϕ such that $\nabla \phi = f$, then $0 = \text{curl } \nabla \phi = \text{curl } f$ should be satisfied. But that is not the case here.
- 5. Let C be a curve represented by two parametric representations such that $C = \{R_1(s) : s \in [a,b]\} = \{R_2(t) : t \in [c,d]\}$, where $R_1 : [a,b] \to \mathbb{R}^3$ and $R_2 : [c,d] \to \mathbb{R}^3$ be two distinct differentiable one-one maps.
 - (a) Show that there exists a function $h:[c,d]\to[a,b]$ such that $R_2(t)=R_1(h(t))$.
 - (b) If R_1 and R_2 trace out C in the same direction, then $\int_C f \cdot dR_1 = \int_C f \cdot dR_2$.
 - (c) If R_1 and R_2 trace out C in the opposite direction, then $\int_C f \cdot dR_1 = -\int_C f \cdot dR_2$.

Solution: (a) Consider $h(t) = R_1^{-1}(R_2(t))$.

(b & c) By chain rule $R'_2(t) = R'_1(t)h'(t)$. Therefore, the required line integral

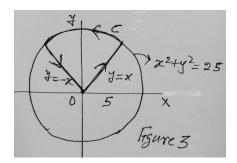
$$\int_C f dR_2 = \int_c^d f(R_2(t)) \cdot R_2'(t) dt = \int_c^d f(R_1(h(t))) \cdot R_1'(h(t)) h'(t) dt.$$

Let u = h(t). Then

$$\int_C f \cdot dR_2 = \int_{h(c)}^{h(d)} f(R_1(u)) \cdot R_1'(u) du = \pm \int_a^b f(R_1(u)) \cdot R_1'(u) du = \pm \int_C f \cdot dR_1.$$

6. Evaluate the line integral $\oint_C (x^2 \sin^2 x - y^3) dx + (y^2 \cos^2 y - y) dy$, where C is the closed curve consisting x + y = 0, $x^2 + y^2 = 25$ and y = x and lying in the first and fourth quadrants.

Solution: Let D be the domain enclosed by C as shown in Figure 3.

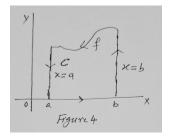


By Green's Theorem,

$$\oint_C (x^2 \sin^2 x - y^3) dx + (y^2 \cos^2 y - y) dy = \iint_D 3y^2 dx dy = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_0^5 3r^2 \sin^2 \theta dr d\theta.$$

7. Let $f:[a,b] \to \mathbb{R}$ be a non-negative continuously differentiable function. Suppose C is the boundary of the region bounded above by the graph of f, below by the x-axis and on the sides by the lines x=a and x=b. Show that $\int_a^b f(x)dx = -\oint_C ydx$.

Solution: Let D be the domain enclosed by C as shown in Figure 4.

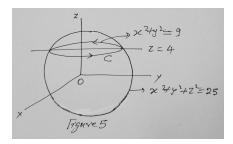


It follows from Green's theorem that

$$\int_{a}^{b} f(x)dx = \text{Area}(D) = \iint_{D} 1dxdy = -\int_{C} (ydx + 0dy).$$

8. Let $F(x,y,z)=(y,-x,2z^2+x^2)$ and S be the part of the sphere $x^2+y^2+z^2=25$ that lies below the plane z=4. Evaluate $\iint_S \operatorname{curl} F \cdot \hat{n} d\sigma$, where \hat{n} is the unit outward normal of S.

Solution: Let C be the boundary of the surface S as shown in Figure 5.



Then $C = \{(3\sin\theta, 3\cos\theta, 4) : 0 \le \theta < 2\pi\}$. Note that C is oriented clockwise when viewed from above. By Stoke's Theorem

$$\iint\limits_{S} \operatorname{curl} F \cdot \hat{n} d\sigma = \oint\limits_{C} F \cdot dR = \int_{0}^{2\pi} F(R(\theta)) \cdot R'(\theta) d\theta = 18\pi.$$

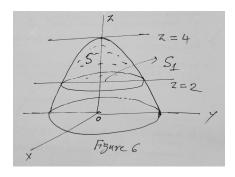
9. Let C be the boundary of the cone $z=x^2+y^2$ and $0 \le z \le 1$. Use Stoke's theorem to evaluate the line integral $\int_C \vec{F}.d\vec{R}$ where $\vec{F}=(y,xz,1)$. Solution: Let $f(x,y,x)=x^2+y^2-z$. Then $S=\{(x,y,z): f(x,y,x)=0\}$ will be the surface of the domain. The unit normal to S will be $\hat{n}=\frac{\nabla f}{\|\nabla f\|}=\frac{(2x,2y,-1)}{\sqrt{4(x^2+y^2)+1}}$. Let $z=g(x,y)=x^2+y^2$. Then $d\sigma=\sqrt{g_x^2+g_y^2+1}dxdy$. By Stoke's Theorem

$$\int_{C} \vec{F} \cdot d\vec{R} = \iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} \ d\sigma = \iint_{R} \operatorname{curl} \vec{F} \cdot \hat{n} \sqrt{1 + g_{x}^{2} + g_{y}^{2}} dx dy,$$

where $R = \{(x, y): x^2 + y^2 \le 1\}.$

10. Let $\vec{F} = (xy, yz, zx)$ and S be the surface $z = 4 - x^2 - y^2$ with $2 \le z \le 4$. Use divergence theorem to find the surface integral $\iint \vec{F} \cdot \vec{n} \, d\sigma$.

Solution: Let $S_1 = \{(x, y, 2) : x^2 + y^2 \le 2\}$. Please refer to Figure 6.



By divergence theorem,

$$\iint\limits_{S} \vec{F} \cdot \vec{n} \ d\sigma + \iint\limits_{S_{1}} \vec{F} \cdot \vec{n_{1}} \ d\sigma_{1} = \iiint\limits_{D} \operatorname{div} \ \vec{F} \ dxdydz.$$

Here

$$\iint\limits_{S_1} \vec{F} \cdot \vec{n} \ d\sigma_1 = \iint\limits_{x^2 + y^2 \le 2} (xy, yz, zx) \cdot (-k) dx dy$$

Here $\iint\limits_{S_1} \vec{F}.\vec{n}\ d\sigma_1 = \iint\limits_{x^2+y^2\leq 2} (xy,yz,zx).(-k)dxdy$ 11. Let S be the sphere $x^2+y^2+z^2=1$. If some $\alpha\in\mathbb{R}$ satisfies $\iint\limits_{S} (zx+\alpha y^2+xz)d\sigma=\frac{4\pi}{3}$, then find α .

Solution:

Let D denote the solid enclosed by the surface S. By divergence theorem

$$\iint\limits_{S}(z,\alpha y,x).(x,y,z)d\sigma=\iiint\limits_{D}\alpha dxdydz=\alpha\frac{4\pi}{3}.$$

Hence $\alpha = 1$.