## MA15010H: Multi-variable Calculus

(Practice problem set 1) July - November, 2025

- 1. If  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ , then show that
  - (a)  $\|\mathbf{x} \mathbf{y}\| \le \|\mathbf{x} \mathbf{y}\|$ .
  - (b)  $\|\mathbf{x} + \mathbf{y}\| \|\mathbf{x} \mathbf{y}\| \le \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ .
  - (c)  $\|\mathbf{x}\| \le \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{x} \mathbf{y}\|\}.$
  - (d)  $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$  for all  $\alpha \in \mathbb{R}$  iff  $\mathbf{x} \cdot \mathbf{y} = 0$ .
- 2. Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$  and  $\alpha > 0$ . Show that  $|\mathbf{x} \cdot \mathbf{y}| \le \alpha ||\mathbf{x}||^2 + \frac{1}{4\alpha} ||\mathbf{y}||^2$ .
- 3. Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ . Show that  $\|\mathbf{x}\| \|\mathbf{y}\| = \|\mathbf{x} \mathbf{y}\|$  iff  $\alpha \mathbf{x} = \beta \mathbf{y}$  for some  $\alpha, \beta \geq 0$  with  $(\alpha, \beta) \neq (0, 0)$ .
- 4. Let  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$  and r > 0 such that  $\mathbf{y} \cdot \mathbf{z} = 0$  for all  $\mathbf{z} \in B_r(\mathbf{x})$ . Show that  $\mathbf{y} = 0$ .
- 5. If  $x_0 \in \mathbb{R}^m$  and r > 0, then determine  $\sup\{\|\mathbf{x} \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(x_0)\}$  with justification.
- 6. Let  $S \subseteq \mathbb{R}^m$  such that  $S \subseteq B_r(x_0)$  for some  $x_0 \in \mathbb{R}^m$  and for some r > 0. Show that S is a bounded set.
- 7. Let  $\alpha \in (0,1)$  and let  $\mathbf{x}_n = (n^{3\alpha}n, \frac{1}{n}[n\alpha])$  for all  $n \in \mathbb{N}$  (For each  $x \in \mathbb{R}$ , [x] denotes the greatest integer not exceeding x). Examine whether the sequence  $(\mathbf{x}_n)$  converges in  $\mathbb{R}^2$ . Also, find  $\lim_{n\to\infty} \mathbf{x}_n$  if the sequence  $(\mathbf{x}_n)$  converges in  $\mathbb{R}^2$ .
- 8. Let  $(\mathbf{x}_n)$  be a sequence in  $\mathbb{R}^m$  such that the series  $\sum_{n=1}^{\infty} n^2 ||\mathbf{x}_n||^2$  is convergent. Show that the series  $\sum_{n=1}^{\infty} ||\mathbf{x}_n||$  is convergent.
- 9. Let  $(\mathbf{x}_n)$  and  $(\mathbf{y}_n)$  be sequences in  $\mathbb{R}^m$  such that  $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^m$  and  $\mathbf{y}_n \to \mathbf{y} \in \mathbb{R}^m$ . Show that  $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$  and  $\mathbf{x}_n \cdot \mathbf{y}_n \to \mathbf{x} \cdot \mathbf{y}$ .
- 10. Let  $\mathbf{x} \in \mathbb{R}^m$  and let  $(\mathbf{x}_n)$  be a sequence in  $\mathbb{R}^m$  such that  $\|\mathbf{x}_n\| \to \|\mathbf{x}\|$  and  $\mathbf{x}_n \cdot \mathbf{x}_n \to \mathbf{x} \cdot \mathbf{x}$ . Show that  $(\mathbf{x}_n)$  is convergent.
- 11. State TRUE or FALSE with justification for each of the following statements:
  - (a) If  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$  such that  $\mathbf{x} \neq \mathbf{y}$  and  $\|\mathbf{x}\| = 1 = \|\mathbf{y}\|$ , then it is necessary that  $\|\mathbf{x} + \mathbf{y}\| < 2$ .
  - (b) If  $(\mathbf{x}_n)$  is a sequence in  $\mathbb{R}^m$  such that for each  $\mathbf{x} \in \mathbb{R}^m$ ,  $\lim_{n \to \infty} \mathbf{x}_n \cdot \mathbf{x}$  exists (in  $\mathbb{R}$ ), then  $\lim_{n \to \infty} \|\mathbf{x}_n\|^2$  must exist (in  $\mathbb{R}$ ).
  - (c) There exists an unbounded sequence  $(x_n)$  of distinct real numbers such that the sequence  $(x_n, \cos x_n)$  in  $\mathbb{R}^2$  has a convergent subsequence.

- 12. Let  $S = \{(x,y) \in \mathbb{R}^2 : x \neq y\}$  and let  $f: S \to \mathbb{R}$  be defined by  $f(x,y) = \frac{x+y}{x-y}$  for all  $(x,y) \in S$ . Show by using the definition of continuity that f is continuous at (1,2).
- 13. If  $f: \mathbb{R}^2 \to \mathbb{R}$  is continuous and  $f(x,y) = x^2 + y^2$  for all  $x \in \mathbb{Q}$  and for all  $y \in \mathbb{R} \setminus \mathbb{Q}$ , then determine  $f(\sqrt{2},2)$ .
- 14. Examine the continuity of  $f: \mathbb{R}^2 \to \mathbb{R}$  at (0,0), where for all  $(x,y) \in \mathbb{R}^2$ ,

(a) 
$$f(x,y) = \begin{cases} xy & \text{if } xy \ge 0, \\ -xy & \text{if } xy < 0. \end{cases}$$
  
(b)  $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \ne (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$   
(c)  $f(x,y) = \begin{cases} 1 & \text{if } x > 0 \text{ and } 0 < y < x^2, \\ 0 & \text{otherwise.} \end{cases}$ 

15. Determine all the points of  $\mathbb{R}^2$  where  $f: \mathbb{R}^2 \to \mathbb{R}$  is continuous, if for all  $(x, y) \in \mathbb{R}^2$ ,

label=(a) 
$$f(x,y) = \begin{cases} \frac{xy}{x-y} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$
  
lbbel=(b)  $f(x,y) = \begin{cases} xy & \text{if } xy \in \mathbb{Q}, \\ -xy & \text{if } xy \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ 

16. Let  $\alpha, \beta$  be positive real numbers and let  $f: \mathbb{R}^2 \to \mathbb{R}$  be defined by

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{x^2 + x^2y^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is continuous iff  $\alpha + \beta > 2$ .

- 17. Let S be a nonempty subset of  $\mathbb{R}^m$  and let  $f_j: S \to \mathbb{R}$  for each  $j \in \{1, \ldots, k\}$ . If  $f(x) = (f_1(x), \ldots, f_k(x))$  for all  $x \in S$ , then show that  $f: S \to \mathbb{R}^k$  is continuous at  $x_0 \in S$  iff  $f_j$  is continuous at  $x_0$  for each  $j \in \{1, \ldots, k\}$ .
- 18. Examine the continuity of  $f: \mathbb{R}^2 \to \mathbb{R}^2$  at (0,0), where for all  $(x,y) \in \mathbb{R}^2$ ,

$$f(x,y) = \begin{cases} \left(\frac{x^3}{x^2 + y^2}, \sin(x^2 + y^2)\right) & \text{if } (x,y) \neq (0,0), \\ (0,0) & \text{if } (x,y) = (0,0). \end{cases}$$

19. If  $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$  are continuous at  $x_0 \in S$  and if  $\varphi(x) = f(x) \cdot g(x)$  for all  $x \in S$ , then show that  $\varphi: S \to \mathbb{R}$  is continuous at  $x_0$ .

- 20. Let  $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$  be continuous at  $x_0 \in S^0$  and let  $f(x_0) \neq 0$ . Show that there exists r > 0 such that  $f(x) \neq 0$  for all  $x \in B_r(x_0)$ .
- 21. Let S be an open subset of  $\mathbb{R}^m$  and let  $f: S \to \mathbb{R}^k$  and  $g: S \to \mathbb{R}^k$  be continuous at  $x_0 \in S$ . If for each  $\epsilon > 0$ , there exist  $x, y \in B_{\epsilon}(x_0)$  such that f(x) = g(y), then show that  $f(x_0) = g(x_0)$ .
- 22. If  $S = \{(x, y) \in \mathbb{R}^2 : x + y \ge 2\}$ , then determine (with justification)  $S^0$ .
- 23. If  $S = \{(x_1, \dots, x_m) \in \mathbb{R}^m : x_m = 1\}$ , then determine (with justification)  $S^0$ .
- 24. If  $\mathbf{x} \in \mathbb{R}^m$  and r > 0, then determine (with justification) all the interior points of  $B_r[\mathbf{x}]$ .
- 25. Examine whether  $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$  is an open set in  $\mathbb{R}^2$ .