MA15010H: Multi-variable Calculus

(Lecturenote 2: Sequential continuity and vector differentiability)
July - November, 2025

Sequential criterion of closed set.

Theorem 0.1. A set S C R™ is closed in R™ if and only if x € S for every sequence
() in S with x, — .

Proof. Let S be closed in R™ and let (x,) be a sequence in S such that z,, — = € R™. If
possible, let ¢ S. Then z € R™ \ S and since R™ \ S is open in R™, there exists r > 0
such that B,(z) CR™\ S. Now, since x,, — z, there exists ny € N such that z,, € B,(z)
for all n > ng. In particular, z,, € R™ \ S, which is a contradiction. Hence x € S.
Conversely, let = € S for every € R™ and for every sequence (x,) in S with z,, — =.
If possible, let S be not closed in R™. Then R™ \ S is not open in R™ and hence there
exists € R™\ S such that « ¢ (R™\ S)°. So By,(x) € R™\ S for each n € N. Hence
for each n € N, there exists x, € By/,(x) such that =, ¢ R™\ S, ie., z, € S. We have

1
|z, — z|| < — — 0, which gives x,, — x. Thus we get a contradiction. Therefore S must

be closed in R™.

O
Example 0.2. (a) {(z,y) € R? : 22 + y* < 1} is a closed set but not an open set in
R2,
(b) More generally, if 2o € R™ and r > 0, then B,[x¢] is a closed set but not an open
set in R™.

(b) {(z,y) € R?: 2% + y? < 1} is an open set but not a closed set in R?.
More generally, if 2o € R™ and r > 0, then B,(x¢) is an open set but not a closed
set in R™.

(c) {(x,y) € R?: 1 < z < 2} is neither open nor a closed set in R?.

(d) R™ is both an open set and a closed set in R™.

Theorem 0.3. Let S be a nonempty closed and bounded subset of R™. If f: S — RP is
continuous, then f(S) = {f(x):x € S} is a closed and bounded subset of RP.

Proof. Let x,, € S for all n € N and let y € R? such that f(z,) — y. Since S is bounded,
() is a bounded sequence in S and hence by the Bolzano-Weierstrass theorem in R™,
there exist zyp € R™ and a subsequence (zy, ) of (x,) such that z,, — z,. Again, since S is
closed in R™, xy € S. Now, since f is continuous at zo, f(x,,) = f(zo). Also, f(x,) =y
and so y = f(zo) € f(5). Therefore f(.5) is closed in RP.

If possible, let f(S) be not bounded. Then for each n € N, there exists z,, € S such
that || f(z,)|| > n. Since S is bounded, (z,) is a bounded sequence in S and hence by
the Bolzano-Weierstrass theorem in R™, there exist zp € R™ and a subsequence (x,, )
of (z,) such that z,, — . Again, since S is closed in R™, zy € S. Now, since f
is continuous at zg, f(z,,) — f(x¢). Thus the sequence (f(z,,)) must be bounded.
However, ||f(x,,)|| > n for all £ € N and so (f(z,,)) is not bounded. Thus we get a

contradiction. Therefore f(S) must be bounded.
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Example 0.4. We know that S; = {(x,y) € R? : 2% + y? < 1} is a closed and bounded
set in R?. Also, R is not a bounded set in R and Sy = {(z,y) € R? : 2% + y*> < 1} is not
a closed set in R2. Hence there cannot exist any continuous function from S; onto R or
onto Ss.

Theorem 0.5. Let S be a nonempty closed and bounded subset of R™. If f : S — R is
continuous, then there exist xo,yo € S such that f(x¢) = sup f(S) and f(yo) = inf f(5).

Proof. We have proved above that f(S) is a (nonempty) bounded set in R. Hence
sup f(S),inf f(S) € R. Let a = sup f(S). Then for each n € N, there exists z, € S
such that @ — L < f(z,) < a. Hence f(z,) — o. Since f(z,) € f(S) for all n € N
and f(S) is closed in R (as proved above), a € f(S). So there exists zy € S such that
a = f(xg). Similarly we can show that there exists yo € S such that f(yo) = inf f(5) O

Remark 0.6. A function f: S C R™ — RP? is called bounded if f() is a bounded subset
of RP. We note that for a bounded function f : S C R™ — R, it is not necessary that
max f(.5) and min f(5) exist.

For example, if f(z,y) = {2425 for all (,y) € R?, then f : R — R is bounded,
because 0 < f(x,y) < 1 for all (z,y) € R? but there is no (zg,y9) € R? such that

f(z,y) < f(xo,y0) for all (z,y) € R2

Definition 0.7 (Limit Point). A point x € R™ is said to be a limit point of S C R™ if
for every r > 0, (B.(x) \ {z}) NS # 0 (i.e. if for every r > 0, there exists y € S such
that 0 < ||z — y|| < r). For example, (0,0) and (1,0) are limit points of S = {(z,y) €
R?: 2% +y? < 1} C R? but (1,1) is not a limit point of S. We note that (0,0) € S but
(1,0) ¢ S.

Definition 0.8 (Limit). Let x be a limit point of S C R™. Then y € R* is said to be
a limit of f : S — R¥ as x approaches z if for every € > 0, there exists § > 0 such that
| f(z) —y|| < e forall x € S satisfying 0 < ||z — 2| <.

Such an ¥, if it exists, is unique because if z € R* with z # y is also a limit of f as x
approaches o, then € = $|ly — z|| > 0 and so there exist &1, 85 > 0 such that f(z) € B.(y)
for all x € (Bs,(x9) \ {zo}) NS and f(z) € B.(z) for all z € (Bs,(zo) \ {zo}) N S. If
§ = min{dy, o2}, then § > 0 and since (Bs(zo) \ {xo}) NS # (), we can choose x € (Bs(zo) \
{z0})NS. Then f(x) € B.(y) N B-(z), which contradicts the fact that B.(y) N B.(z) = 0,
proved earlier.

The y appearing in the above definition is called the limit of f as x approaches zy and

we write
lim f(x)=y.

T—T0

Sequential criterion of limit.

Theorem 0.9. Let zq be a limit point of S C R™ and let f : S — RF.

lim f(z) =y € RF < for every sequence (x,,) in S\ {xo} converging to x,
T—TQ



the sequence (f(x,)) converges to y.

Proof. Let lim,_,, f(z) = y and let (x,) be a sequence in S\ {zo} such that z,, — x.
If ¢ > 0, then there exists § > 0 such that ||f(z) — y|| < ¢ for all z € S satisfying
0 < ||z — x|l < 6. Also, since z,, # zo for all n € N and z,, — xg, there exists ny € N
such that 0 < ||z, — x|l < ¢ for all n > ny. Hence || f(z,) —y|| < ¢ for all n > ng. Thus
(f(zn)) = .

Conversely, let f(z,) — y for every sequence (z,) in S\ {zo} with x, — zo. If possible,
let lim, ., f(z) # y. Then there exists ¢ > 0 such that for every n € N, there exists
z, € S with 0 < ||z, — z|| < + and || f(x,) — y|| > €. Thus (z,) is a sequence in S\ {zo}
such that ||z, — zo|| — 0, i.e. &, — x¢ but f(x,) # y. This is a contradiction. Therefore
lim, ., f(x) =v. O

Example 0.10.

T3

Iim —=0
(z,9)—(0,0) 2 4 y2

but
2

lim does not exist (in R).

(z,y)—(0,0) T* 4 y2

A method for showing the non-existence of limit.

Theorem 0.11. Let (x9,y) be a limit point of S C R? and let f : S — R. Let D C R
such that xq is a limit point of D and let ¢ : D — R such

that (z,¢(x)) € S for all x € D and lim,_5, o(x) = yo. If im(z ) (20,90) f(2,y) =€ €
R, then

lim f(x,p(x)) =¢.

T—T0

Proof. Let (x,) be any sequence in D\ {zo} such that z,, — xo. Since lim,_,,, ¥(x) = yo,

we get (p(l'n) — Yo- NOW7 ((Inu Sp(xn))) is a sequence n S\{(J;Oa yﬂ)} and ((xm 90<xn))) -
(70, y0). Since lim ) (z0,50) f (2, y) = £, we have f(x,,¢(z,)) — ¢. Consequently

i (z. () = £

[l
Example 0.12. (a) If f(2,y) = ;75 for all (z,y) € R\ {(0,0)}, then
lim T
o o f(z,y)
does not exist (in R) because if m € R, then lim, o f(z, mz) = lim,_,o IQTTT;QCQ = 17

which gives more than one value if we vary m.
(b) If f(z,y) = -2, for all (z,y) € R2\{(0,0)}, then lim, ) (0,0) f (2, y) does not exist

z2+y2

(in R) because if m € R, then lim, o f(z, ma?) = lim, 0 75— = lim, m =0
for all m € R. Note that in this case lim, o f(x, mz) = lim,_,o mQT:;zQ = xz(TﬁnQ) =0

for all m € R.
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Remark 0.13. The polar coordinates in R? can also be used in the evaluation of certain
limits of functions f : S C R? — R. For example, taking + = rcosf,y = rsinf, where
r >0 and 6 € [0,27), we find that

1'2

2
v = 0
Y 7| cos

|s| =7 — 0 as r — 0 and hence we can conclude that
: z°
lim @ ——=
(2.9)(00) 2% + y?
However, while using this method we should not assume 6 to be a constant while taking
limit as r — 0.

Theorem 0.14. Let zo be a limit point of S C R™ and let f : S — RE. If f(z) =
(fi(z1), ..., fu(zg)) for all x € S, where f; : S = R for j =1,... k, then lim,_,,, f(x
exists in R* iff lim, ., f;(x) ezists in R for each j € {1,....,k}, and in that case

Jim f(z) = (lim fi(2), ..., lim fi(z))

Proof. Let us first assume that lim, ., f(z) =y = (y1,...,yx) € R* and let (z,,) be any
sequence in S\ {zo} such that x, — xo. Then f(z,) = (fi(xn), ., fx(zn)) = (Y1, -, Yk)
and hence f;(z,) — y; for each j € {1,...,k}. Consequently lim,_,,, f;(z) = y; for each
je{l, ..k}

Conversely, let lim,_,,, fj(z) = y; € R for each j € {1,...,k} and let (z,) be any
sequence in S\ {xo} such that x, — zo. Then f;(x,) — y; for each j € {1,...,k
and hence f(x,) = (fi(zn), . fu(®n)) = (W1,...,yx) € RE. Therefore lim, ., f(z) =
(1, ..., ) € RE. O

Remark 0.15. The limit rules for combinations of functions can be given similar to those
for continuity:.

Relation between limit and continuity. Let S C R™ and xg € S If 2 is also a limit
point of S, then from the definitions of continuity and limit, it follows immediately that
f: S — R¥is continuous at xq iff lim,_,,, f(x) = f(x0).

On the other hand, if z( is not a limit point of S, then there exists 6 > 0 such that
Bs(zg) NS = {zo} and so ||f(xz) — f(zo)|| = 0 for all = € S satisfying ||z — x¢|| < .
Consequently f is continuous at z.

Infinite limits: Let zy be a limit point of § C R™ and let f : S — R. Then we write
lim, ., f(x) = oo if for every r > 0, there exists § > 0 such that f(z) > r for all z € S
satisfying ||z — xo|| < 0.

It can be shown that lim,_,,, f(z) = oo if and only if for every sequence (z,) in S\ {zo}
converging to zg, f(z,) — oo.

We can also define lim,_,,, f(z) = —oo analogously and obtain its sequential criterion.



Example 0.16.

1
im —=w but lim
(2,4)—(0,0) 2 4 2 (z,y)—(0,0) T+ Y

# 00

0.1. Differentiability of vector valued function of one real variable. A function
F:S CR— R is said to be differentiable at tq € S if limy_,;, ——(F(t) — F(ty)) exists

t—to
(in R¥) and in that case the derivative of F at t; is defined as F'(ty) = lim;_,, ﬁ(F(t) -
F(to)).
If F(t) = (fi(t),..., fe(t)) for all t € S, then F is differentiable at t, (t, € S°) if and
only if f; : § — R is differentiable at t, for each j € {1,...,k}, and in such case
F'(to) = (fi(to), - - -, fi(to)).
We say that F': S C R — R* is differentiable (on S) if F is differentiable at every point
of S.

Example 0.17. If F(t) = (cost,sint,t) for all ¢ € R, then F : R — R? is differentiable
(since each component function of F' is differentiable) and F'(t) = (—sint, cost, 1) for all
te R

Remark 0.18. Let ' : S C R — R* and let t; € S\ 95 be one point of an interval
contained in S. Then the differentiability and the derivative of F' at ty are defined as in
the above definition by considering t — ¢ or t — t,, whichever is applicable.

Differentiation of composite functions. Differentiable functions can be combined (in
meaningful ways) to produce new differentiable functions. We illustrate this with the
following results. Let F,G : S C R — R* be differentiable at ¢, € S°. Then
(a) F+ G : S — R is differentiable at ty and (F + G) (to) = F'(to) + G'(to).
(b) If F: G : S — R* is differentiable at ¢, and (F - G)'(to) = F'(to) - G(to) + F(to) -
G'(to).
(c) oF : S — RF is differentiable at ty and (pF) (to) = ¢ (to)F (to) + @(to)F'(to),
where ¢ : S — R is differentiable at .

We prove (b). The other two can be similarly proved.

Proof of (b). Let F(t) = (fi(t),..., fe(t)) and G(t) = (g1(¢), ..., gr(t)) for allt € S, where
fi g; S — Rforeach j € {1,...,k}. Then (F-G)(t) = F(t)-G(t) = Z?zl fi(t)g;(t) for
allt € S.

Since F' and G are differentiable at ¢y, f; and g; are differentiable at ¢, for each j €
{1,...,k} and hence F' - G is differentiable at t;. Also,

k k

(F-G)(t) = Z fi(to)g;(to) + Z fi(to)g;(to) = F'(to) - G(to) + F(to) - G'(to)-

Jj=1 Jj=1
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0.2. Chain rule.

Theorem 0.19. Let o : D CR — R and F : S C R — R* be such that o(D) C S. If ¢ is
differentiable at sy € D° and F is differentiable at to = p(sq) € S°, then Fo : D — R*
is differentiable at so and (F o ) (s0) = ¢'(s0)F'(¢(s0))-

Proof. Let F(t) = (fi(t),..., fx(t)) forallt € S, where f; : S — Rforeach j € {1,...,k}.
Since F' is differentiable at ¢, f; is differentiable at ¢; for each j € {1,...,k}. Hence by
the chain rule of calculus of one real variable, f; o ¢ : D — R is differentiable at sy and
(fio®)'(s0) = ¢'(50) fj(¢(0)). Thus F o is differentiable at s, and

(F o) (s0) = (¢'(50) f1((50)), - - -, ' (50) fr(0(50))) = ¥ (s0) F" (0(50))-

for each j € {1,...,k}. Since
(Fop)(s) = Fe(s)) = (fi(e(s), - frle(s)) = ((fro@)(s), ..., (fe 0 0)(s))
for all s € D, F o is differentiable at so and (F o) (so) = (f1 Ogo)/(so), o (e 090)/(30)

= (¢'(s0) fi(to), - - ' (50) fi(t0)) = ' (s0) (fi(t0). - -, fi(to)) = & (s0) F'(to).
U

Example 0.20. Let ¢(s) = 2s* +3s — 3 for all s € R and F(t) = (2¢3,° + 9,5t* + 1)
for all t € R. Then ¢ : R — R is differentiable at 1 and F : R — R? is differentiable at
©(1) = 2. Hence by chain rule, F'o ¢ : R — R? is differentiable at 1 and

Fop)(1) = (1)F(2) = 11(24, 192, 160) = (264, 2112, 1760).
@ @

However, since (F o p)(s) = (2(¢(5))3, (0(5))° +9,5(¢(s))* + 1) for all s € R, in this case
without using the above chain rule also we can directly obtain that F o ¢ is differentiable
at 1 and

(F o) (1) = (264,2112,1760).

Partial derivative. Let f: S C R? — R and let (xg,yo) € S°. The partial derivative of
f with respect to x (the first variable) at (xq,yo) is defined as

_of - . f(wo+t,y0) — f(z0,%0)
g L0y o) = o = fa(20,50) = lim . :

Z0,Y0
provided this limit exists (in R).

Similarly, the partial derivative of f with respect to y (the second variable) at (xq, yo)
is defined as

of af

a—y(l’o,yo) N dy = fy(20,90) = lim f(zo, yo +1) = fwo, y0)

t—0 t ’

Z0,Y0

provided this limit exists (in R).
Thus if f: {z € R: (z,5) € S},B ={y € R : (z0,y) € S},p(x) = f(z,y0) for all
x € Aand ¢Y(y) = f(xo,y) for all y € B, then f,(zo,v0) = ¢'(z0) and f,(z0,v0) = ¥'(vo)-
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More generally, if f : S C R™ — R, 2o € S° and j € {1,...,m}, then the partial
derivative of f with respect to z; at x is

Of 1y = 2L

8:cj (x()) N axj .

f (o + tej) — f(20)
t Y

= fo;(w0) = lim

provided this limit exists (in R).
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