MA15010H: Multi-variable Calculus

(Lecturenote 1: Limits and continuity) July - November, 2025

The Space \mathbb{R}^m . For each $m \in \mathbb{N}$, let

$$\mathbb{R}^m = \{(x_1, \dots, x_m) : x_j \in \mathbb{R} \text{ for } j = 1, \dots, m\}.$$

If m > 1, an element of \mathbb{R}^m is called a **vector** and is denoted by x, y, etc. If m = 1, we identify \mathbb{R}^m with \mathbb{R} and write an element as x, α , etc., which is then called a **scalar**.

Structures on \mathbb{R}^m .

(a) **Addition:** For $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m) \in \mathbb{R}^m$, define

$$x + y = (x_1 + y_1, \dots, x_m + y_m).$$

(b) Multiplication by a scalar: For $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$, define

$$\alpha x = (\alpha x_1, \dots, \alpha x_m).$$

(c) **Dot product (scalar product):** For $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m) \in \mathbb{R}^m$, define

$$x \cdot y = x_1 y_1 + \dots + x_m y_m.$$

(d) Norm: For $x = (x_1, \dots, x_m) \in \mathbb{R}^m$, define

$$||x|| = (x_1^2 + \dots + x_m^2)^{\frac{1}{2}} = \sqrt{x \cdot x}.$$

(e) **Distance:** For $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m) \in \mathbb{R}^m$, define

$$||x - y|| = \left(\sum_{j=1}^{m} (x_j - y_j)^2\right)^{\frac{1}{2}}.$$

With these structures, \mathbb{R}^m is called **Euclidean m-space**.

Notations. We write 0 = (0, ..., 0) and, for each $j \in \{1, ..., m\}$, $e_j = (0, ..., 0, 1, 0, ..., 0)$, where 1 is in the j-th position. If $x = (x_1, ..., x_m) \in \mathbb{R}^m$, then $x = x_1e_1 + \cdots + x_me_m$.

Properties. For all $x, y, z \in \mathbb{R}^m$ and $\alpha \in \mathbb{R}$:

- (a) $||x|| = 0 \iff x = 0$
- (b) $\|\alpha x\| = |\alpha| \|x\|$
- (c) $|x_j| \le ||x||$ for all $j \in \{1, ..., m\}$, where $x = (x_1, ..., x_m)$
- (d) $x \cdot (y+z) = x \cdot y + x \cdot z$
- (e) $||x + y||^2 = ||x||^2 + 2x \cdot y + ||y||^2$ and $||x y||^2 = ||x||^2 2x \cdot y + ||y||^2$

Cauchy-Schwarz Inequality.

$$|x \cdot y| \le ||x|| ||y||$$
 for all $x, y \in \mathbb{R}^m$.

Proof: If y = 0, then $|x \cdot y| = 0 = ||x|| ||y||$. Now assume $y \neq 0$. Then $||y|| \neq 0$. Let $\alpha = \frac{x \cdot y}{||y||^2}$.

$$0 \le \|x - \alpha y\|^{2}$$

$$= \|x\|^{2} - 2\alpha x \cdot y + \alpha^{2} \|y\|^{2}$$

$$= \|x\|^{2} - 2\frac{(x \cdot y)^{2}}{\|y\|^{2}} + \frac{(x \cdot y)^{2}}{\|y\|^{2}}$$

$$= \|x\|^{2} - \frac{(x \cdot y)^{2}}{\|y\|^{2}}$$

So $(x \cdot y)^2 \le ||x||^2 ||y||^2$, hence $|x \cdot y| \le ||x|| ||y||$.

Remark. If $x, y \in \mathbb{R}^m$, then $|x \cdot y| = ||x|| ||y||$ iff y = 0 or $x = \alpha y$ for some $\alpha \in \mathbb{R}$.

Proof: If y = 0, then $|x \cdot y| = 0 = ||x|| ||y||$. If $x = \alpha y$ for $\alpha \in \mathbb{R}$, then $|x \cdot y| = |\alpha| ||y||^2$ and $||x|| ||y|| = |\alpha| ||y||^2$, so $|x \cdot y| = ||x|| ||y||$.

Conversely, if $|x \cdot y| = ||x|| ||y||$ and $y \neq 0$, then for $\alpha := \frac{x \cdot y}{||y||^2} \in \mathbb{R}$,

$$||x - \alpha y||^2 = ||x||^2 - \frac{|x \cdot y|^2}{||y||^2} = 0$$

implying $x = \alpha y$.

Angle Between Vectors. If $x, y \in \mathbb{R}^m \setminus \{0\}$, by Cauchy-Schwarz,

$$-1 \le \frac{x \cdot y}{\|x\| \|y\|} \le 1$$

so there exists a unique $\theta \in [0, \pi]$ such that

$$\cos \theta = \frac{x \cdot y}{\|x\| \|y\|}.$$

 θ is called the angle between x and y.

Vectors x, y are **orthogonal** if $x \cdot y = 0$, and are **parallel** if there exists $\alpha \in \mathbb{R}$ such that $x = \alpha y$.

Triangle Inequality.

$$\|x+y\| \leq \|x\| + \|y\| \qquad \text{for all } x,y \in \mathbb{R}^m.$$

Proof:

$$||x+y||^2 = ||x||^2 + 2x \cdot y + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$
 so $||x+y|| \le ||x|| + ||y||$.

Open Ball and Closed Ball. Let $x_0 \in \mathbb{R}^m$, r > 0. Define

$$B_r(x_0) = \{x \in \mathbb{R}^m : ||x - x_0|| < r\}, \qquad B_r[x_0] = \{x \in \mathbb{R}^m : ||x - x_0|| \le r\}$$

as the open ball and closed ball in \mathbb{R}^m with center x_0 and radius r.

Examples:

• In \mathbb{R}^2 : $B_1((0,0)) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$

• In \mathbb{R}^3 : $B_1((0,0,0)) = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\}$

Remark: If $x, y \in \mathbb{R}^m$, $x \neq y$ and $r = \frac{1}{2}||x - y|| > 0$, then $B_r(x) \cap B_r(y) = \emptyset$. Suppose there existed $z \in B_r(x) \cap B_r(y)$. Then ||z - x|| < r, ||z - y|| < r, so

$$2r = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = ||z - x|| + ||z - y|| < r + r = 2r$$
 which is a contradiction.

Sequences in \mathbb{R}^m . A sequence in \mathbb{R}^m is a function $f: \mathbb{N} \to \mathbb{R}^m$, denoted (x_n) , with $x_n := f(n).$

A sequence (x_n) in \mathbb{R}^m is called **convergent** if there exists $x \in \mathbb{R}^m$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $||x_n - x|| < \varepsilon$ for all $n \geq n_0$ (i.e., $x_n \in B_{\varepsilon}(x)$ for those n).

The x in the above definition is unique: If $y \neq x$ also satisfies the definition, then $\varepsilon = \frac{1}{2} ||x - y|| > 0$, so there exist n_1 , n_2 such that $x_n \in B_{\varepsilon}(x)$ for $n \geq n_1$, $x_n \in B_{\varepsilon}(y)$ for $n \geq n_2$. For $n_0 = \max\{n_1, n_2\}, x_{n_0} \in B_{\varepsilon}(x) \cap B_{\varepsilon}(y)$, a contradiction. Thus the limit x is unique, denoted as $\lim_{n\to\infty} x_n = x$ or $x_n \to x$.

Note: $x_n \to x$ in \mathbb{R}^m if and only if $||x_n - x|| \to 0$ in \mathbb{R} .

Theorem: Let (x_n) be a sequence in \mathbb{R}^m , $x_n = (x_1^{(n)}, \dots, x_m^{(n)})$. Then (x_n) converges in \mathbb{R}^m if and only if, for each $j \in \{1, \ldots, m\}$, the sequence $\left(x_j^{(n)}\right)$ converges in \mathbb{R} ; that is, if $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, then $x_n \to x$ in \mathbb{R}^m iff $x_j^{(n)} \to x_j$ for each j. **Proof:** Assume $(x_n) \to x$ in \mathbb{R}^m . Given $\varepsilon > 0$, $||x_n - x|| < \varepsilon$ for $n \ge n_0$. For each j,

$$|x_i^{(n)} - x_j| \le ||x_n - x|| < \varepsilon,$$

so $\left(x_j^{(n)}\right) \to x_j$ in \mathbb{R} for each j.

Conversely, let $(x_j^{(n)}) \to x_j$ in \mathbb{R} for each j. For any $\varepsilon > 0$, choose n_j so that for $n \geq n_i$

$$|x_j^{(n)} - x_j| < \frac{\varepsilon}{\sqrt{m}}.$$

Let $n_0 = \max\{n_1, \ldots, n_m\}$, then for $n \ge n_0$,

$$||x_n - x|| = \left(\sum_{j=1}^m (x_j^{(n)} - x_j)^2\right)^{1/2} < \left(m\left(\frac{\varepsilon^2}{m}\right)\right)^{1/2} = \varepsilon.$$

Examples:

- (a) The sequence $((2n+3n)^{1/n}, \frac{1}{n}\cos n)$ in \mathbb{R}^2 converges to (3,0) since $(2n+3n)^{1/n} \to 3$ and $\frac{1}{n}\cos n \to 0$ in \mathbb{R} .
- (b) The sequence $(n, \frac{1}{n})$ in \mathbb{R}^2 is not convergent since (n) does not converge in \mathbb{R} .

Bounded Sets. A subset $S \subseteq \mathbb{R}^m$ is called **bounded** if there exists r > 0 so that $||x|| \le r$ for all $x \in S$ (i.e., $S \subseteq B_r[0]$).

Examples:

- $\{(x, y, z) \in \mathbb{R}^3 : |x| + 2|y| + 3z^2 < 1\}$ is bounded in \mathbb{R}^3 .
- $\{(x,y) \in \mathbb{R}^2 : x+y \le 1\}$ is unbounded in \mathbb{R}^2 .

A sequence (x_n) in \mathbb{R}^m is **bounded** if its set $\{x_n : n \in \mathbb{N}\}$ is bounded.

Theorem: Every convergent sequence in \mathbb{R}^m is bounded.

Proof: Let (x_n) be a convergent sequence in \mathbb{R}^m , with $x_n = (x_1^{(n)}, \dots, x_m^{(n)})$. For each j, $(x_j^{(n)})$ is convergent in \mathbb{R} , hence bounded. So, for each j, there is $r_j > 0$ so that $|x_j^{(n)}| \leq r_j$ for all n. Thus,

$$||x_n|| = \left(\sum_{j=1}^m |x_j^{(n)}|^2\right)^{1/2} \le \left(\sum_{j=1}^m r_j^2\right)^{1/2}$$

so (x_n) is bounded.

Remark: An unbounded sequence cannot converge in \mathbb{R}^m . The converse is false; for example, $(1,1),(0,0),(1,1),(0,0),\ldots$ is bounded but not convergent in \mathbb{R}^2 .

Bolzano-Weierstrass Theorem in \mathbb{R}^m . Every bounded sequence in \mathbb{R}^m has a convergent subsequence.

Proof: Will be shown for m = 2. General case is similar.

Let (x_n, y_n) be bounded in \mathbb{R}^2 . There is r > 0 so that $||(x_n, y_n)|| \le r$ for all n. So $|x_n| \le r$ and $|y_n| \le r$, so (x_n) is bounded. By Bolzano-Weierstrass in \mathbb{R} , there exist $x \in \mathbb{R}$ and a subsequence $x_{n_k} \to x$. Then (y_{n_k}) is also bounded, so there is a further subsequence $y_{n_{k_l}} \to y$. Thus $(x_{n_{k_l}, y_{n_{k_l}}})$ is a subsequence converging to $(x, y) \in \mathbb{R}^2$.

Example: The sequence $(\sin n, \cos n)$ in \mathbb{R}^2 has no limit because $(\sin n)$ doesn't converge, but it has a convergent subsequence because $\|(\sin n, \cos n)\| = 1$ for all n.

Continuity. Let $\emptyset \neq S \subseteq \mathbb{R}^m$. A function $f: S \to \mathbb{R}^k$ is **continuous at** $x_0 \in S$ if for every $\varepsilon > 0$, there exists $\delta > 0$ so that $||f(x) - f(x_0)|| < \varepsilon$ whenever $x \in S$ and $||x - x_0|| < \delta$.

f is **continuous on** S iff it is continuous at all $x_0 \in S$.

Examples:

- (1) If $y_0 \in \mathbb{R}^k$ and $f(x) = y_0$ for all $x \in \mathbb{R}^m$, then $f: \mathbb{R}^m \to \mathbb{R}^k$ is continuous.
- (2) $f(x) = x_j$ for $x = (x_1, \dots, x_m) \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$ is continuous.
- (3) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous at (0,0).

Sequential Criterion of Continuity: A function $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ is continuous at $x_0 \in S$ iff for every sequence (x_n) in S converging to x_0 , $(f(x_n))$ converges to $f(x_0)$ in \mathbb{R}^k . **Proof:** Suppose f is continuous at x_0 and $(x_n) \to x_0$ in S. For $\varepsilon > 0$, there exists $\delta > 0$ so that $||f(x) - f(x_0)|| < \varepsilon$ whenever $x \in S$, $||x - x_0|| < \delta$. Since $x_n \to x_0$, for some n_0 , $||x_n - x_0|| < \delta$ for $n \ge n_0$, hence $||f(x_n) - f(x_0)|| < \varepsilon$. Thus $f(x_n) \to f(x_0)$.

If $f(x_n) \to f(x_0)$ for all sequences $(x_n) \to x_0$, suppose f isn't continuous there. Then for some $\varepsilon > 0$, for all n there is $x_n \in S$ so that $||x_n - x_0|| < 1/n$ and yet $||f(x_n) - f(x_0)|| \ge \varepsilon$. But $||x_n - x_0|| \to 0$, so $x_n \to x_0$ but $f(x_n) \not\to f(x_0)$, a contradiction.

Examples:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} 1, & x^2 + y^2 \le 1 \\ 2, & x^2 + y^2 > 1 \end{cases}$ is continuous at (x,y) iff $x^2 + y^2 \ne 1$.
(b) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \ne (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ is not continuous at $(0,0)$.
(c) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \begin{cases} x^2 + y^2 & x,y \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$ is continuous only at $(0,0)$.

Combination of Continuous Functions. Continuous functions may be combined in meaningful ways to produce new continuous functions.

- (a) If $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ are continuous at $x_0 \in S$, then $f+g: S \to \mathbb{R}^k$ is continuous at x_0 , where (f + g)(x) = f(x) + g(x).
- (b) If $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}$ are continuous at $x_0 \in S$, then $fg: S \to \mathbb{R}$ is continuous at x_0 . (c) If $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$, $g: S \to \mathbb{R}$ are continuous at $x_0 \in S$ and $g(x) \neq 0$ for all $x \in S$,
- then $\frac{f}{g}: S \to \mathbb{R}^k$ is continuous at x_0 .
- (d) If $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ and $g: T \subseteq \mathbb{R}^k \to \mathbb{R}^p$ with $f(S) \subseteq T$, f is continuous at $x_0 \in S$, and q is continuous at $f(x_0)$, then $g \circ f : S \to \mathbb{R}^p$ is continuous at x_0 .

Proof of (2): Given $(x_n) \to x_0$, since f and g are continuous, $f(x_n) \to f(x_0)$ and $g(x_n) \to g(x_0)$. Then $(fg)(x_n) = f(x_n)g(x_n) \to f(x_0)g(x_0) = (fg)(x_0)$. So, fg is continuous at x_0 .

Proof of (4): Given $(x_n) \to x_0$, $f(x_n) \to f(x_0)$ and g is continuous at $f(x_0)$. So $g(f(x_n)) \to g(f(x_0)), \text{ thus } (g \circ f)(x_n) \to (g \circ f)(x_0).$ Examples:

(a) Let $p: \mathbb{R}^m \to \mathbb{R}$ be a polynomial,

$$p(x_1, \dots, x_m) = \sum_{j_1=0}^{k_1} \dots \sum_{j_m=0}^{k_m} a_{j_1, \dots, j_m} x_1^{j_1} \dots x_m^{j_m},$$

where
$$a_{j_1,\dots,j_m} \in \mathbb{R}$$
, k_1,\dots,k_m are non-negative integers. Then p is continuous.
(b) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \begin{cases} \frac{x^2 + y^2}{x + y} & x + y \neq 0 \\ 0 & x + y = 0 \end{cases}$ is continuous at (x,y) iff $x + y \neq 0$.

(c) If $f(x,y) = e^{\sin(x^2+y^2)}$ for all $(x,y) \in \mathbb{R}^2$, then f is continuous.

Interior Point. If $S \subseteq \mathbb{R}^m$, $x_0 \in S$ is an **interior point** if there exists r > 0 with $B_r(x_0) \subseteq S$. Let S^0 denote the set of all interior points of S. E.g., if $S = \{(x,y) \in \mathbb{R}^2 : x + y \leq 0\} \subseteq \mathbb{R}^2$, then $(-1,0) \in S^0$ but $(0,0) \notin S^0$.

Open and Closed Sets. $S \subseteq \mathbb{R}^m$ is **open** in \mathbb{R}^m if every point of S is interior. $S \subseteq \mathbb{R}^m$ is **closed** in \mathbb{R}^m if $\mathbb{R}^m \setminus S$ is open. Example: $S = \{(x,y) \in \mathbb{R}^2 : x+y < 0\}$ is open in \mathbb{R}^2 , so $\mathbb{R}^2 \setminus S = \{(x,y) : x+y \geq 0\}$ is closed in \mathbb{R}^2 .