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The Space Rm. For each m ∈ N, let

Rm = {(x1, . . . , xm) : xj ∈ R for j = 1, . . . ,m} .

If m > 1, an element of Rm is called a vector and is denoted by x, y, etc. If m = 1, we
identify Rm with R and write an element as x, α, etc., which is then called a scalar.

Structures on Rm.

(a) Addition: For x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm, define

x+ y = (x1 + y1, . . . , xm + ym).

(b) Multiplication by a scalar: For x = (x1, . . . , xm) ∈ Rm, α ∈ R, define

αx = (αx1, . . . , αxm).

(c) Dot product (scalar product): For x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm,
define

x · y = x1y1 + · · ·+ xmym.

(d) Norm: For x = (x1, . . . , xm) ∈ Rm, define

∥x∥ =
(
x2
1 + · · ·+ x2

m

) 1
2 =

√
x · x.

(e) Distance: For x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm, define

∥x− y∥ =

(
m∑
j=1

(xj − yj)
2

) 1
2

.

With these structures, Rm is called Euclidean m-space.

Notations. We write 0 = (0, . . . , 0) and, for each j ∈ {1, . . . ,m}, ej = (0, . . . , 0, 1, 0, . . . , 0),
where 1 is in the j-th position. If x = (x1, . . . , xm) ∈ Rm, then x = x1e1 + · · ·+ xmem.

Properties. For all x, y, z ∈ Rm and α ∈ R:
(a) ∥x∥ = 0 ⇐⇒ x = 0
(b) ∥αx∥ = |α|∥x∥
(c) |xj| ≤ ∥x∥ for all j ∈ {1, . . . ,m}, where x = (x1, . . . , xm)
(d) x · (y + z) = x · y + x · z
(e) ∥x+ y∥2 = ∥x∥2 + 2x · y + ∥y∥2 and ∥x− y∥2 = ∥x∥2 − 2x · y + ∥y∥2
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Cauchy-Schwarz Inequality.

|x · y| ≤ ∥x∥∥y∥ for all x, y ∈ Rm.

Proof: If y = 0, then |x · y| = 0 = ∥x∥∥y∥. Now assume y ̸= 0. Then ∥y∥ ̸= 0. Let
α = x·y

∥y∥2 .

0 ≤ ∥x− αy∥2

= ∥x∥2 − 2αx · y + α2∥y∥2

= ∥x∥2 − 2
(x · y)2

∥y∥2
+

(x · y)2

∥y∥2

= ∥x∥2 − (x · y)2

∥y∥2

So (x · y)2 ≤ ∥x∥2∥y∥2, hence |x · y| ≤ ∥x∥∥y∥.

Remark. If x, y ∈ Rm, then |x · y| = ∥x∥∥y∥ iff y = 0 or x = αy for some α ∈ R.
Proof: If y = 0, then |x · y| = 0 = ∥x∥∥y∥. If x = αy for α ∈ R, then |x · y| = |α|∥y∥2
and ∥x∥∥y∥ = |α|∥y∥2, so |x · y| = ∥x∥∥y∥.
Conversely, if |x · y| = ∥x∥∥y∥ and y ̸= 0, then for α := x·y

∥y∥2 ∈ R,

∥x− αy∥2 = ∥x∥2 − |x · y|2

∥y∥2
= 0

implying x = αy.

Angle Between Vectors. If x, y ∈ Rm \ {0}, by Cauchy-Schwarz,

−1 ≤ x · y
∥x∥∥y∥

≤ 1

so there exists a unique θ ∈ [0, π] such that

cos θ =
x · y

∥x∥∥y∥
.

θ is called the angle between x and y.
Vectors x, y are orthogonal if x · y = 0, and are parallel if there exists α ∈ R such

that x = αy.

Triangle Inequality.

∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rm.

Proof:

∥x+ y∥2 = ∥x∥2 + 2x · y + ∥y∥2 ≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2

so ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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Open Ball and Closed Ball. Let x0 ∈ Rm, r > 0. Define

Br(x0) = {x ∈ Rm : ∥x− x0∥ < r} , Br[x0] = {x ∈ Rm : ∥x− x0∥ ≤ r}

as the open ball and closed ball in Rm with center x0 and radius r.
Examples:

• In R2: B1((0, 0)) = {(x, y) ∈ R2 : x2 + y2 < 1}
• In R3: B1((0, 0, 0)) = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}

Remark: If x, y ∈ Rm, x ̸= y and r = 1
2
∥x− y∥ > 0, then Br(x) ∩Br(y) = ∅.

Suppose there existed z ∈ Br(x) ∩Br(y). Then ∥z − x∥ < r, ∥z − y∥ < r, so

2r = ∥x− y∥ = ∥x− z + z − y∥ ≤ ∥x− z∥+ ∥z − y∥ = ∥z − x∥+ ∥z − y∥ < r + r = 2r

which is a contradiction.

Sequences in Rm. A sequence in Rm is a function f : N → Rm, denoted (xn), with
xn := f(n).

A sequence (xn) in Rm is called convergent if there exists x ∈ Rm such that for every
ε > 0, there exists n0 ∈ N satisfying ∥xn − x∥ < ε for all n ≥ n0 (i.e., xn ∈ Bε(x) for
those n).

The x in the above definition is unique: If y ̸= x also satisfies the definition, then
ε = 1

2
∥x − y∥ > 0, so there exist n1, n2 such that xn ∈ Bε(x) for n ≥ n1, xn ∈ Bε(y) for

n ≥ n2. For n0 = max{n1, n2}, xn0 ∈ Bε(x) ∩ Bε(y), a contradiction. Thus the limit x is
unique, denoted as limn→∞ xn = x or xn → x.

Note: xn → x in Rm if and only if ∥xn − x∥ → 0 in R.
Theorem: Let (xn) be a sequence in Rm, xn = (x

(n)
1 , . . . , x

(n)
m ). Then (xn) converges in

Rm if and only if, for each j ∈ {1, . . . ,m}, the sequence
(
x
(n)
j

)
converges in R; that is, if

x = (x1, . . . , xm) ∈ Rm, then xn → x in Rm iff x
(n)
j → xj for each j.

Proof: Assume (xn) → x in Rm. Given ε > 0, ∥xn − x∥ < ε for n ≥ n0. For each j,

|x(n)
j − xj| ≤ ∥xn − x∥ < ε,

so
(
x
(n)
j

)
→ xj in R for each j.

Conversely, let
(
x
(n)
j

)
→ xj in R for each j. For any ε > 0, choose nj so that for

n ≥ nj,

|x(n)
j − xj| <

ε√
m
.

Let n0 = max{n1, . . . , nm}, then for n ≥ n0,

∥xn − x∥ =

(
m∑
j=1

(x
(n)
j − xj)

2

)1/2

<

(
m

(
ε2

m

))1/2

= ε.

Examples:
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(a) The sequence
(
(2n+ 3n)1/n, 1

n
cosn

)
in R2 converges to (3, 0) since (2n+ 3n)1/n → 3

and 1
n
cosn → 0 in R.

(b) The sequence (n, 1
n
) in R2 is not convergent since (n) does not converge in R.

Bounded Sets. A subset S ⊆ Rm is called bounded if there exists r > 0 so that ∥x∥ ≤ r
for all x ∈ S (i.e., S ⊆ Br[0]).

Examples:

• {(x, y, z) ∈ R3 : |x|+ 2|y|+ 3z2 < 1} is bounded in R3.
• {(x, y) ∈ R2 : x+ y ≤ 1} is unbounded in R2.

A sequence (xn) in Rm is bounded if its set {xn : n ∈ N} is bounded.
Theorem: Every convergent sequence in Rm is bounded.

Proof: Let (xn) be a convergent sequence in Rm, with xn = (x
(n)
1 , . . . , x

(n)
m ). For each j,

(x
(n)
j ) is convergent in R, hence bounded. So, for each j, there is rj > 0 so that |x(n)

j | ≤ rj
for all n. Thus,

∥xn∥ =

(
m∑
j=1

|x(n)
j |2

)1/2

≤

(
m∑
j=1

r2j

)1/2

so (xn) is bounded.
Remark: An unbounded sequence cannot converge in Rm. The converse is false; for
example, (1, 1), (0, 0), (1, 1), (0, 0), . . . is bounded but not convergent in R2.

Bolzano-Weierstrass Theorem in Rm. Every bounded sequence in Rm has a conver-
gent subsequence.

Proof: Will be shown for m = 2. General case is similar.
Let (xn, yn) be bounded in R2. There is r > 0 so that ∥(xn, yn)∥ ≤ r for all n. So

|xn| ≤ r and |yn| ≤ r, so (xn) is bounded. By Bolzano-Weierstrass in R, there exist x ∈ R
and a subsequence xnk

→ x. Then (ynk
) is also bounded, so there is a further subsequence

ynkl
→ y. Thus (xnkl

,ynkl
) is a subsequence converging to (x, y) ∈ R2.

Example: The sequence (sinn, cosn) in R2 has no limit because (sinn) doesn’t converge,
but it has a convergent subsequence because ∥(sinn, cosn)∥ = 1 for all n.

Continuity. Let ∅ ̸= S ⊆ Rm. A function f : S → Rk is continuous at x0 ∈ S if
for every ε > 0, there exists δ > 0 so that ∥f(x) − f(x0)∥ < ε whenever x ∈ S and
∥x− x0∥ < δ.

f is continuous on S iff it is continuous at all x0 ∈ S.
Examples:

(1) If y0 ∈ Rk and f(x) = y0 for all x ∈ Rm, then f : Rm → Rk is continuous.
(2) f(x) = xj for x = (x1, . . . , xm) ∈ Rm, f : Rm → R is continuous.
(3) f : R2 → R defined by

f(x, y) =


xy√
x2 + y2

if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

is continuous at (0, 0).
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Sequential Criterion of Continuity: A function f : S ⊆ Rm → Rk is continuous at
x0 ∈ S iff for every sequence (xn) in S converging to x0, (f(xn)) converges to f(x0) in Rk.
Proof: Suppose f is continuous at x0 and (xn) → x0 in S. For ε > 0, there exists δ > 0
so that ∥f(x) − f(x0)∥ < ε whenever x ∈ S, ∥x − x0∥ < δ. Since xn → x0, for some n0,
∥xn − x0∥ < δ for n ≥ n0, hence ∥f(xn)− f(x0)∥ < ε. Thus f(xn) → f(x0).

If f(xn) → f(x0) for all sequences (xn) → x0, suppose f isn’t continuous there. Then for
some ε > 0, for all n there is xn ∈ S so that ∥xn−x0∥ < 1/n and yet ∥f(xn)−f(x0)∥ ≥ ε.
But ∥xn − x0∥ → 0, so xn → x0 but f(xn) ̸→ f(x0), a contradiction.

Examples:

(a) f : R2 → R, f(x, y) =

{
1, x2 + y2 ≤ 1

2, x2 + y2 > 1
is continuous at (x, y) iff x2 + y2 ̸= 1.

(b) f : R2 → R, f(x, y) =

{
xy

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
is not continuous at (0, 0).

(c) f : R2 → R, f(x, y) =

{
x2 + y2 x, y ∈ Q
0 otherwise

is continuous only at (0, 0).

Combination of Continuous Functions. Continuous functions may be combined in
meaningful ways to produce new continuous functions.

(a) If f, g : S ⊆ Rm → Rk are continuous at x0 ∈ S, then f + g : S → Rk is continuous
at x0, where (f + g)(x) = f(x) + g(x).

(b) If f, g : S ⊆ Rm → R are continuous at x0 ∈ S, then fg : S → R is continuous at x0.
(c) If f : S ⊆ Rm → Rk, g : S → R are continuous at x0 ∈ S and g(x) ̸= 0 for all x ∈ S,

then
f

g
: S → Rk is continuous at x0.

(d) If f : S ⊆ Rm → Rk and g : T ⊆ Rk → Rp with f(S) ⊆ T , f is continuous at x0 ∈ S,
and g is continuous at f(x0), then g ◦ f : S → Rp is continuous at x0.

Proof of (2): Given (xn) → x0, since f and g are continuous, f(xn) → f(x0) and
g(xn) → g(x0). Then (fg)(xn) = f(xn)g(xn) → f(x0)g(x0) = (fg)(x0). So, fg is
continuous at x0.
Proof of (4): Given (xn) → x0, f(xn) → f(x0) and g is continuous at f(x0). So

g(f(xn)) → g(f(x0)), thus (g ◦ f)(xn) → (g ◦ f)(x0).
Examples:

(a) Let p : Rm → R be a polynomial,

p(x1, . . . , xm) =

k1∑
j1=0

· · ·
km∑

jm=0

aj1,...,jmx
j1
1 · · · xjm

m ,

where aj1,...,jm ∈ R, k1, . . . , km are non-negative integers. Then p is continuous.

(b) f : R2 → R, f(x, y) =


x2 + y2

x+ y
x+ y ̸= 0

0 x+ y = 0
is continuous at (x, y) iff x+ y ̸= 0.
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(c) If f(x, y) = esin(x
2+y2) for all (x, y) ∈ R2, then f is continuous.

Interior Point. If S ⊆ Rm, x0 ∈ S is an interior point if there exists r > 0 with
Br(x0) ⊆ S. Let S0 denote the set of all interior points of S.

E.g., if S = {(x, y) ∈ R2 : x+ y ≤ 0} ⊆ R2, then (−1, 0) ∈ S0 but (0, 0) /∈ S0.

Open and Closed Sets. S ⊆ Rm is open in Rm if every point of S is interior.
S ⊆ Rm is closed in Rm if Rm \ S is open.
Example: S = {(x, y) ∈ R2 : x+ y < 0} is open in R2, so R2 \ S = {(x, y) : x+ y ≥ 0}

is closed in R2.
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