MA15010H: Multi-variable Calculus

(Lecturenote 1: Limits and continuity)
July - November, 2025

The Space R™. For each m € N, let
R™ ={(z1,...,2m) 1z € Rfor j=1,...,m}.

If m > 1, an element of R™ is called a vector and is denoted by x,y, etc. If m =1, we
identify R™ with R and write an element as x, «, etc., which is then called a scalar.

Structures on R™.
(a) Addition: For x = (x1,...,2m), y = (Y1, ..., Ym) € R™, define
r+y=(r14+Y, - Tm + Ym)-
(b) Multiplication by a scalar: For x = (z1,...,z,) € R™, a € R, define
ar = (axy, ..., axy,).

(c) Dot product (scalar product): For x = (z1,...,2,), ¥ = (y1,--.,Ym) € R™,
define
(d) Norm: For x = (z1,...,x,) € R™, define

lof = (22 4+ +22)% = Vo

(e) Distance: For x = (z1,..., %), ¥y = (Y1, ..., Ym) € R™, define

|z —yll = (Z(%‘ - yj)2> :

=1

With these structures, R™ is called Euclidean m-space.

Notations. We write 0 = (0, ...,0) and, foreach j € {1,...,m},¢; = (0,...,0,1,0,...,0),
where 1 is in the j-th position. If © = (z1,...,2,,) € R™, then © = x1e1 + -+ + T €.

Properties. For all x,y,z € R™ and o € R:

(a) ||lz]| =0 <= =0

(b) o] = |af[l]]

(¢) |z;| < ||z| for all j € {1,...,m}, where x = (z1,..., %)
(d)z-(y+z)=z-y+x-2

() [l +yll* = llz|* + 22 - y + [ly[|* and ||= - yll> = ll=ll* = 22 -y + [ly|]?
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Cauchy-Schwarz Inequality.

|z - y| < lz||||y] for all z,y € R™.
Proof: If y = 0, then |z -y| = 0 = ||z||||ly||. Now assume y # 0. Then ||y|| # 0. Let
a =%,
llyll?

0< |z —ayl?
= [|z]|* = 20 - y + o*||y]?
x-1y)? x-1y)?
( y2) N ( y2)
Y]l 1yl
(z-y)?
llyll?
So (z-y)* < [|=|*|ly|I?, hence |z - y| < [|z|[|y].

= [l]* -2

= ||l=[|* -

Remark. If z,y € R™, then |z - y| = ||z||||ly]] iff y = 0 or z = ay for some « € R.
Proof: If y = 0, then |z -y| = 0 = ||z||||y]|. If z = ay for a € R, then |z -y| = |a|||y|
and [lz|[[[yll = lalllyl?, so [z - y| = [lz][ly]-

Conversely, if |z - y[ = [lz|[|lyl| and y # 0, then for o := 7z € R,
|z -yl
Iz — ayl* = [|l=||* - =
1yl

implying = = ay.

Angle Between Vectors. If x,y € R™\ {0}, by Cauchy-Schwarz,
Ty
— lllllyll —

so there exists a unique 6 € [0, 7] such that

cosf = )
[z (l[[yll

0 is called the angle between x and y.
Vectors x,y are orthogonal if x - y = 0, and are parallel if there exists a« € R such
that x = ay.
Triangle Inequality.
lz+yll < flzll + 1yl for all z,y € R™.
Proof:
lz +yl* = ll2l® + 2z -y + lylI* < [l=l1* + 2ll= [yl + lyl* = (=l + lyl)?
80 [l +yll < [lzfl + [lyll-



Open Ball and Closed Ball. Let g € R™, r > 0. Define
B.(xo) ={z € R™ : ||lx — x| <7}, Bilxo) ={z € R™ : ||l — x| < 7}

as the open ball and closed ball in R™ with center xy and radius r.
Examples:
e In R% By((0,0)) = {(z,y) e R* : a? + ¢y* < 1}
e In R3: B((0,0,0)) = {(z,y,2) e R® : 22 + y> + 22 < 1}
Remark: If 2,y € R™,z # y and r = $|lz — y|| > 0, then B,(z) N B,(y) = 0.
Suppose there existed z € B.(z) N B,(y). Then ||z —z| < r, ||z —y| <, so

r=lz—yl=llz-z+z-yl <lz—zl+lz=yll =z =2zl + ]z =yl <r+r=2r

which is a contradiction.

Sequences in R™. A sequence in R™ is a function f : N — R™ denoted (z,), with
xn = f(n).

A sequence (z,,) in R™ is called convergent if there exists x € R™ such that for every
e > 0, there exists ny € N satisfying ||z, — z|| < € for all n > ny (i.e., x, € B.(x) for
those n).

The z in the above definition is unique: If y # x also satisfies the definition, then
€= %Hx —y|| > 0, so there exist ny, ny such that z,, € B.(z) for n > ny, z,, € B:(y) for
n > ny. For ng = max{ny,na}, x,, € B:(x) N B:(y), a contradiction. Thus the limit z is
unique, denoted as lim,, ., x,, = x or z,, — .

Note: x, — « in R™ if and only if ||z, — z|| — 0 in R.

Theorem: Let (x,) be a sequence in R™, x,, = (xgn), e ,xq(ff)). Then (x,) converges in

R™ if and only if, for each j € {1,...,m}, the sequence (:pgn)

> converges in R; that is, if
x=(x1,...,2y) € R™ then z, — x in R™ iff x§n) — x; for each j.

Proof: Assume (z,,) — = in R™. Given ¢ > 0, ||z, — x| < & for n > ny. For each j,

2 — 2] < o, — 2] <&,

SO <x§n)> — x; in R for each j.

Conversely, let (xgn)) — x; in R for each j. For any ¢ > 0, choose n; so that for
n > n;,
(n) , €
Let ng = max{ny,...,n,}, then for n > ny,
m 1/2 223\ /2
|zn — 2| = (Z(:c§-") - xj)2> < (m (E)) =e.
j=1

Examples:
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(a) The sequence ((2n + 3n)'/", L cosn) in R? converges to (3,0) since (2n + 3n)"/" — 3
and %cosn — 0 in R.

(b) The sequence (n, ) in R? is not convergent since (n) does not converge in R.

Bounded Sets. A subset S C R™ is called bounded if there exists r > 0 so that ||z|| <r
for all z € S (i.e., S C B,[0]).
Examples:
o {(z,y,2) € R®: |x| + 2ly| + 32 < 1} is bounded in R®.
o {(z,y) € R?: x + y < 1} is unbounded in R?.
A sequence (z,) in R™ is bounded if its set {x, : n € N} is bounded.
Theorem: Every convergent sequence in R™ is bounded.

Proof: Let (x,) be a convergent sequence in R™, with x,, = ( g"), o ,xg,’f)). For each 7,

(:UE")) is convergent in R, hence bounded. So, for each j, there is r; > 0 so that ]acgn)\ <

for all n. Thus,
m 1/2 m 1/2
A (Dxﬁ-")ﬁ) < (Zr?)
j=1

j=1
so (x,) is bounded.

Remark: An unbounded sequence cannot converge in R™. The converse is false; for
example, (1,1),(0,0),(1,1),(0,0),... is bounded but not convergent in R2.

Bolzano-Weierstrass Theorem in R™. Every bounded sequence in R™ has a conver-
gent subsequence.

Proof: Will be shown for m = 2. General case is similar.

Let (z,,y,) be bounded in R%. There is r > 0 so that [|(x,,y,)]] < r for all n. So
|z,| <rand |y,| <7, so (z,)is bounded. By Bolzano-Weierstrass in R, there exist x € R
and a subsequence x,,, — x. Then (y,, ) is also bounded, so there is a further subsequence
Yy, = Y- Thus (:L‘nkl . is a subsequence converging to (z,y) € R

Example: The sequence (sin n, cosn) in R? has no limit because (sinn) doesn’t converge,
but it has a convergent subsequence because ||(sinn, cosn)|| = 1 for all n.

Continuity. Let ) # S C R™. A function f : S — R is continuous at z, € S if
for every ¢ > 0, there exists § > 0 so that ||f(x) — f(zo)|]| < € whenever z € S and
|z — x| < 9.

f is continuous on S iff it is continuous at all xq € S.

Examples:
(1) If yo € R* and f(x) = yp for all z € R™, then f: R™ — R* is continuous.
(2) f(z) =, for x = (z1,...,2,) € R™, f: R™ — R is continuous.

(3) f:R? — R defined by
L if (x,y) # (0,0)

flz,y) = Vot +y°

0 if (x,y) = (0,0)

is continuous at (0, 0).
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Sequential Criterion of Continuity: A function f : S C R™ — RF is continuous at
zg € S iff for every sequence (z,,) in S converging to g, (f(z,)) converges to f(zg) in R*.
Proof: Suppose f is continuous at xg and (x,) — x¢ in S. For € > 0, there exists 6 > 0
so that || f(z) — f(zo)|| < € whenever x € S, || — z¢|| < 6. Since x,, — ¢, for some ny,
I — zol] < 5 for n > ng, hence || f(z) — f(zo)|| < . Thus f(zs) — F(zo).

If f(z,) = f(xo) for all sequences (z,,) — xo, suppose f isn’t continuous there. Then for
some € > 0, for all n there is z,, € S so that ||z, — x| < 1/n and yet || f(z,) — f(z0)]| > €.
But ||z, — xo|| = 0, so x, — o but f(x,) 4 f(zo), a contradiction.

Examples:

1, 2*4+¢y*<1
2, 22 +y*>1
Fr (@) £ (0,0)
0 (z,y) = (0,0)
> +9y? x,ycQ

0 otherwise

(a) f:R* =R, f(z,y) = { is continuous at (z,y) iff %+ y? # 1.

is not continuous at (0, 0).

(b) f:R? =R, f(il?,y)—{

is continuous only at (0,0).

(c) f:R* =R, f(z,y) :{

Combination of Continuous Functions. Continuous functions may be combined in
meaningful ways to produce new continuous functions.

(a) If f,g: S C R™ — R* are continuous at xy € S, then f + ¢ : S — R* is continuous

at xo, where (f + g)(z) = f(z) + g(z).
(b) If f,g: S CR™ — R are continuous at zo € S, then fg:S — R is continuous at x.
(c) If f: SCR™ —= RF g:S — R are continuous at zy € S and g(z) # 0 for all x € S,

then i : S — RF is continuous at .
g
(d) If f: SCR™ — R*and g : T C R¥ — RP with f(S) C T, f is continuous at zy € S,
and g is continuous at f(xg), then go f : S — RP is continuous at x.

Proof of (2): Given (x,) — ¢, since f and g are continuous, f(z,) — f(zo) and

9(xn) — g(xo). Then (fg)(zn) = flan)g(zn) = fl2o)g(wo) = (fg)(x0). So, fg is
continuous at xg.
Proof of (4): Given (x,) — xo, f(z,) — f(zo) and ¢ is continuous at f(zg). So

9(f(2n)) = g(f(20)), thus (g o f)(zn) = (g0 f)(z0)-

Examples:
(a) Let p: R™ — R be a polynomial,

_E E ’ J1 J
p(.fll'l,...,.%m)— ajl 77777 jmxl x'r;zn?

where a;, ;. € R, ki,..., ky, are non-negative integers. Then p is continuous.
2,2
7+
9 Y r+y#0 . ) )
(b) f:R* =R, f(r,y) =< z+y is continuous at (z,y) iff  +y # 0.

0 r+y=20
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(c) If f(z,y) = ™= +¥*) for all (z,y) € R?, then f is continuous.

Interior Point. If S C R™, x5 € S is an interior point if there exists r > 0 with
B,.(x9) C S. Let S° denote the set of all interior points of S.
E.g.,if S={(z,y) e R?: 2z +y <0} CR? then (—1,0) € S° but (0,0) ¢ S°.

Open and Closed Sets. S C R™ is open in R™ if every point of S is interior.

S CR™ is closed in R™ if R™ \ S is open.

Example: S = {(z,y) € R?:x +y < 0} is open in R? so R?\ S = {(z,y) : x +y > 0}
is closed in R2.
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