1. For $x \in \mathbb{R}$, the greatest integer less than or equal to x is denoted by $[x]$. If $a \in(0,1)$, what is the limit of the sequence $X_{n}=\left(a^{n}, \frac{[n a]}{n}\right)$ in \mathbb{R}^{2} ?
2. Write the set of interior points of the set $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ in \mathbb{R}^{2}.
3. List out the points of (i) local maxima (ii) local minima and (iii) saddle points of the function $f(x, y)=x-y$ defined on the domain $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$.
4. Let S be the unit sphere $x^{2}+y^{2}+z^{2}=1$ and \hat{n} be the unit outward normal to S. If F is the vector field given by $F(x, y, z)=x y \hat{i}+y z \hat{j}+z x \hat{k}$, then the value of $\iint_{S} \operatorname{curl} F \cdot \hat{n} d \sigma$ is
5. Let $D=[0,1] \times[0,1]$ and consider the function $f: D \longrightarrow \mathbb{R}$ given by

$$
f(x, y)=\left\{\begin{aligned}
1 & \text { if } y=\frac{1}{3} \text { and } x \text { is rational } \\
-1 & \text { if } y=\frac{1}{3} \text { and } x \text { is irrational } \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Does the double integral $\iint_{D} f(x, y) d x d y$ exist? Justify.
6. Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}$. Consider the function $f: D \longrightarrow \mathbb{R}$ given by

$$
f(x, y)=\left\{\begin{align*}
x & \text { if }|y|>|x| \tag{2}\\
-x & \text { otherwise }
\end{align*}\right.
$$

Find the set of all points in D where f is discontinuous.
7. Using the method of Lagrange multipliers, find all the points where the function

$$
f(x, y)=x^{2}+2 y^{2}-4 y
$$

has (absolute) maximum or (absolute) minimum subject to the constraint $x^{2}+y^{2}=9$.
8. Let D be the region bounded by the lines joining the points $(0,0),(1,0)$ and $(1,2)$ in \mathbb{R}^{2}. Find the area of the surface given by the graph of the function $f(x, y)=x^{2}+2 y$ over the domain D.
9. Prove or disprove: If directional derivatives of a function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ exist at a point along all directions, then the function must be continuous at that point.
10. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a differentiable function. A vector $\alpha \in \mathbb{R}^{2}$ is said to be a derivative of f at $X_{0} \in \mathbb{R}^{2}$, if $e(H)=\frac{f\left(X_{0}+H\right)-f\left(X_{0}\right)-\alpha \cdot H}{\|H\|} \rightarrow 0$ as $\|H\| \rightarrow 0$. Show that derivative of f at X_{0} is unique.
11. Let S be the boundary of the region in \mathbb{R}^{3} bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$. Let \hat{n} be the unit outward normal to the surface S. Evaluate the integral $\iint\left(y \hat{i}+x \hat{j}+z^{2} \hat{k}\right) \cdot \hat{n} d \sigma$.
12. If C is any simple closed and smooth curve in \mathbb{R}^{2} which is not passing through the point $(1,0)$, then evaluate the integral $\oint_{C} \frac{-y d x+(x-1) d y}{(x-1)^{2}+y^{2}}$.
13. Using second derivative test, classify the critical points of the function

$$
f(x, y)=\frac{x^{4}}{4}-x^{3}+x^{2}-y^{2}+1
$$

14. Evaluate the integral $\iint_{D} e^{(x-2 y)} d x d y$ over the domain D bounded by the lines $x-2 y=0$, $2 x-y=0$ and $x+y=1$ in \mathbb{R}^{2}.
15. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function. If there exists $\alpha>1$ such that

$$
\begin{equation*}
f(r x, r y)=r^{\alpha} f(x, y) \tag{3}
\end{equation*}
$$

for all $r>0$ and $x, y \in \mathbb{R}$, then show that f is differentiable at $(0,0)$.

$$
* * * \operatorname{End} * * *
$$

