INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Mid-Semester Examination, Even Semester, 2014-15

Time: 2 Hours

MA 102 Mathematics-II Marks: 30

[1]

[1]

[2]

- 1. For $x \in \mathbb{R}$, the greatest integer less than or equal to x is denoted by [x]. If $a \in (0, 1)$, [1] what is the limit of the sequence $X_n = \left(a^n, \frac{[na]}{n}\right)$ in \mathbb{R}^2 ?
- 2. Write the set of interior points of the set $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ in \mathbb{R}^2 .
- 3. List out the points of (i) local maxima (ii) local minima and (iii) saddle points of the [1] function f(x, y) = x y defined on the domain $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$.
- 4. Let S be the unit sphere $x^2 + y^2 + z^2 = 1$ and \hat{n} be the unit outward normal to S. If F [1] is the vector field given by $F(x, y, z) = xy\hat{i} + yz\hat{j} + zx\hat{k}$, then the value of $\iint_{S} \operatorname{curl} F \cdot \hat{n} d\sigma$ is
- 5. Let $D = [0,1] \times [0,1]$ and consider the function $f: D \longrightarrow \mathbb{R}$ given by

$$f(x,y) = \begin{cases} 1 & \text{if } y = \frac{1}{3} \text{ and } x \text{ is rational,} \\ -1 & \text{if } y = \frac{1}{3} \text{ and } x \text{ is irrational,} \\ 0 & \text{otherwise.} \end{cases}$$

Does the double integral $\iint_{D} f(x, y) dx dy$ exist? Justify.

6. Let $D = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$. Consider the function $f : D \longrightarrow \mathbb{R}$ given by [2]

$$f(x,y) = \begin{cases} x & \text{if } |y| > |x|, \\ -x & \text{otherwise.} \end{cases}$$

Find the set of all points in D where f is discontinuous.

7. Using the method of Lagrange multipliers, find all the points where the function

$$f(x,y) = x^2 + 2y^2 - 4y$$

has (absolute) maximum or (absolute) minimum subject to the constraint $x^2 + y^2 = 9$.

- 8. Let D be the region bounded by the lines joining the points (0,0), (1,0) and (1,2) in [2] \mathbb{R}^2 . Find the area of the surface given by the graph of the function $f(x,y) = x^2 + 2y$ over the domain D.
- 9. Prove or disprove: If directional derivatives of a function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ exist at a point [2] along all directions, then the function must be continuous at that point.
- 10. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a differentiable function. A vector $\alpha \in \mathbb{R}^2$ is said to be a *derivative* [2] of f at $X_0 \in \mathbb{R}^2$, if $e(H) = \frac{f(X_0 + H) f(X_0) \alpha \cdot H}{\|H\|} \to 0$ as $\|H\| \to 0$. Show that derivative of f at X_0 is unique.
- 11. Let S be the boundary of the region in \mathbb{R}^3 bounded by the paraboloid $z = x^2 + y^2$ and [3] the plane z = 1. Let \hat{n} be the unit outward normal to the surface S. Evaluate the integral $\iint (y\hat{i} + x\hat{j} + z^2\hat{k}) \cdot \hat{n}d\sigma$.

12. If C is any simple closed and smooth curve in \mathbb{R}^2 which is not passing through the point [3] (1,0), then evaluate the integral $\oint_C \frac{-ydx + (x-1)dy}{(x-1)^2 + y^2}$.

[3]

[3]

13. Using second derivative test, classify the critical points of the function

$$f(x,y) = \frac{x^4}{4} - x^3 + x^2 - y^2 + 1.$$

- 14. Evaluate the integral $\iint_{D} e^{(x-2y)} dx dy$ over the domain D bounded by the lines x-2y=0, [3] 2x-y=0 and x+y=1 in \mathbb{R}^2 .
- 15. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a continuous function. If there exists $\alpha > 1$ such that

$$f(rx, ry) = r^{\alpha} f(x, y),$$

for all r > 0 and $x, y \in \mathbb{R}$, then show that f is differentiable at (0, 0).