DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA102 Summer-term: MATHEMATICS II
Instructors: S. N. Bora \& R. K. Srivastava
Time: 03:00 hours
End Semester Exam
July 5, 2013
Maximum Marks: 40

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \cos \frac{1}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that the function f is differentiable at $(0,0)$. Further show that none of the partial derivative f_{x} and f_{y} is continuous at $(0,0)$.
2. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Let $\mathbf{v}=\left(\frac{3}{5}, \frac{4}{5}\right)$. Find the directional derivative $D_{\mathbf{v}} f(0,0)$ of f and show that $D_{\mathbf{v}} f(0,0) \neq(\nabla f . \mathbf{v})(0,0)$.
(b) Show that the function f is not differentiable at $(0,0)$.
3. Show that $(0,0)$ is a saddle point for the function $f(x, y)=(x-y)\left(x-y^{2}\right)$.
4. Find the nearest point on the plane $x+2 y+3 z=6$ from the point $(1,0,0)$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\int_{y=0}^{x} \int_{t=0}^{y} f(t) d t d y=\int_{t=0}^{x}(x-t) f(t) d t
$$

6. Evaluate the double integral

$$
\iint_{D} \sqrt{x+y}(y-2 x)^{2} d y d x
$$

over the domain D bounded by the lines $x=0, y=0$ and $x+y=1$.
7. Let \vec{N} the unit outward normal vector on the ellipse $x^{2}+2 y^{2}=1$. Evaluate the line integral

$$
\int_{C} \vec{N} \cdot \overrightarrow{d g}
$$

along the circle $C=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
8. Use fundamental theorem of calculus for line integral to show that

$$
\int_{C} y d x+(x+z) d y+y d z
$$

is independent of any path C joining the points $(2,1,4)$ and $(8,3,-1)$.
9. Find the surface integral

$$
\iint_{S} z d S
$$

where S it the part of the paraboloid $2 z=x^{2}+y^{2}$ which lies in the cylinder $x^{2}+y^{2}=1$.
10. Let C be the boundary of the cone $z=x^{2}+y^{2}$ and $0 \leq z \leq 1$. Use Stoke's theorem to evaluate the line integral

$$
\int_{C} \vec{F} \cdot \overrightarrow{d g}
$$

where $\vec{F}=(y, x z, 1)$.
11. Let $\vec{F}=(x y, y z, z x)$ and S be the surface $z=4-x^{2}-y^{2}$ with $2 \leq z \leq 4$. Use divergence theorem to find the surface integral

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

