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FOURIER ANALYSIS 3

1. FOURIER SERIES

The Fourier series addresses the problem of decomposing a given suitably regular func-
tion into a countable collection of symmetric basis functions, and then reconstructing
the original function through their superposition. In particular, it provides a systematic
method for recovering a function from a discrete set of coefficients encoding essential
information about its behavior.

Question 1.1. What are those symmetric regular functions?

We can see the existence of those elementary symmetric functions while discussing
solutions of wave equation and heat equation.
Consider the wave equation
u  O*u

1 —_— =
(1) ) ) o2 0x?
and a variable separable solution:

u(z,t) = e(x)i(t)

W) P
00 el )

Hence,
o w0 = N(t) =0
' (x) = Ap(z) =0
If A > 0, then ¢ will not oscillate with respect to time ¢t. Hence, we only consider
A < 0 and write A = —m?, where m € Z. Here, we consider countably many m as we
promise/can hope to determine the function only out of countably many known informa-
tions.
Consider ¥(t) = Acosmt + Bsinmt, and ¢(x) = A’ cosma + B’ sinma.
Suppose the string is attached at x = 0 and x = 7. Then
©(0) = ¢(m) =0,

Then from (1),

that yields A’ =0 and B’ # 0.
If m = 0, the solution is trivial. If m < 1, we may re-write the coefficients and reduce
this case to any m > 1, because cosy and siny are even and odd functions, respectively.
Finally, we have
um(z,t) = (A, cosmt + By, sinmt) sinmz.
Since the wave equation (1) is linear, it follows that if u;, v are two solutions of (1), then
auy + (v is also a solution of (1). Thus, we can think of a general solution of (1) like

(3) u(z,t) = Z (A,, cosmt + By, sinmt) sin mz,

m=1
for the wave equation (1). Now, suppose the initial position of the string at t = 0 is given

by the graph of the function f on [0,7] with f(0) = f(x) = 0. Then u(z,0) = f(z).
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Hence, N
Z A sinmz = f(z).
Thus, given reasonable function fmozri [0, 7] with f(0) = f(7) = 0, we may find A,, so that
flx) = f: A, sinmaz?
-1

If f is reasonable enough, we may think of_evaluating
/ f(x)sinnx dr = / (Z A, sin mx) sinnz dr = Z A / sin mx sin nx dx.
0 0 \ = f— 0
1 ) Ang 1

Hence, the n’th sine coefficient of f is

2 K

A, = —/ f(x)sinnx dx.
T™Jo

We can extend this Fourier sine series on [0, 7] to [—m, 7] by assuming f is odd on [—m, 7].
Similarly, we can ask for an even function g on [—m, 7] to have expansion like

(4) g(x) = Z Al cosmz 7
m=0

Since, any arbitrary function on [—, 7] can be expressed as sum of odd and even functions,
a reasonable function F' on [—m, 7| can be thought of having expansion like

(5) F(z) = Z A, sinmzx + Z Al cosmax
m=1 m=0

By using the Euler formula,

e =cosx +isinx,

we can re-write (4) as

F(z) = i A €™ ?

m=—0oQ

By analogy as to the earlier case, we also see that
1 (" ,
n=— F(z)e ""d 4*
a 5 /_ ) (x)e x  (4%)
since
1 " inr _ —imae 1 lf n=m
— e™e dx = ]
2r ) _ . 0 ifn#m
The number q,, is called the nth Fourier coefficient of F'.

Question 1.2. Given any reasonable function F' on [—m, 7], with Fourier coefficients

defined as above, is it possible that
(0.)

(6) F(z) = Z ame™  ?

Joseph Fourier (1768-1830) was the first who declared that an “arbitrary” function can
be expressed as the series (5). However, his idea was implicit and later refined.
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If we look at the wave equation a little carefully, then we come to the fact that it actually

requires two initial conditions. Namely, initial position and initial velocity of the string.

That is,

ou(z,0)
ot

u(e,0) = f(z)  and — g(x)

t=0

From (3), we get

flx) = Z Ay, sin(mac) and g(z) = Z mDB,, sin(mx)
m=1 m=1
Hence, convergence of series for g requires more decay on B,,.

Now, we consider the case of heat flow in an infinite plate. Namely,

ou (0% N 0*u
— =o' =+
ot ox?  Oy?
When steady state reached, there is no “exchange” flow of heat in the plate; implies
u
i
That is,
Pu  *u
7 Au=—+—=0
(M) 4T o + oy?

A function satisfying (7) is known as a harmonic function. Suppose the metallic
plate is the unit disc
D={(z,y) eR*:2*+y* <1}
and
St={(z,y) eR*: 2> + y* =1}
By passing to polar coordinates,
T =1rcosb, Yy = 1rsiné, 0<r<l, 0<0<2m,
the steady-state heat equation reduces to
. Pu  1ou 10%u 0
8) o2 Tror Team
Equation (8) together with initial condition u(1,0) = f(0) is known as the Dirichlet
problem.
That is, we have given a temperature distribution f on the circle S and are waiting
for the temperature distribution inside the disc. Further,
,0%u  Ou 0*u
T ﬁ + T’E = —w
Consider u(r,0) = F(r)G(#). Then
G//(H)

r2F'(r) +rF'(r) = 0

F(r) = \(say )
Thus
G"(6) + AG(8) = 0 and
r?F"(r) +rF'(r) — AF(r) =0
Since G must be periodic, it follows that A > 0. Let A = m? m € Z.
G(0) = Acos(mb) + Bsin(mb) = Ae"™ + Be™"™?
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Case(i): If m # 0, then F(r) = r™ or r~™. Now, for m > 0, r™™ — oo as r — 0, so
F(r)G(#) is unbounded near “zero”.

Case(ii): If m = 0, F(r) = 1 or logr. Hence, again, the solution is unbounded if
F(z) = logr. We reject these two cases, while the solution is unbounded. Thus, we
consider

Un(r,0) =rI™e™ meZ
Since the steady state heat equation (Au =0 = %) is linear, we can think of

E amr\m\eimé

m=—00

as a possible general solution for Au = 07 Hence, for a reasonable function f on [0, 27]
u(1,0) = Y ane™ = f(6)

Question 1.3. Given a reasonable function from C|0, 27| with f(0) = f(27), can we find
the coefficients a,, so that
F0)=>" a,em?

1.1. Functions on Clrcle Let ST = {e? : 0 < § < 27}. Consider the mapping ¢ : R —
St defined by ¢(z) = €. Since p(x +27) = ¢(z) for all z € R, the map ¢ is 27-periodic.
Moreover, ¢ is a group homomorphism from (R, +) to (S, -), with kernel ker(p) = 27Z.
Hence, it follows that S' ~ R/27Z, where the induced isomorphism ¢ : R/27Z — S! is
given by @(z + 27Z) = ¢(z). Now let f: S' — C be a function, and define

fiR=C, by f(z) = [op()

Since @(z + 27) = @(z), we obtain f(z + 27) = f(z), so that f is 2m-periodic. This
establishes a one-to-one correspondence between functions on S! and 27-periodic func-
tions on R. Consequently, functions defined on the unit circle S! can be identified with
2m-periodic functions on R. Through this identification, properties such as continuity,
differentiability, and integrability of functions on S' may be studied via their periodic
representatives on R.

Further, Lebesgue measure on S! can also be identified by means of f is integrable on
St if the corresponding 2m-periodic function (which again we denote by f), is Lebesgue
integrable on [0, 27|, and we write

/f t)dt = 27rf(;l:)ala:
0

Now onward, we identify S* as [0,27) and the Lebesgue measure du on S' as the re-
striction of Lebesgue measure on R to [0, 27). Therefore, dt on S! is translation invariant.
That is, for t, € S,
ft—toat= [ fyat

S1

Sl
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since the corresponding function f on R is 2m-periodic, and

21+, 2km 2m+to
/t Ftydt = F(t)dt + / F(t)dt.

to 2km

(2k+ 1) 2+, (2k+1)m
_ /t F)dt + / F(#)dt = / £Vt

o+2m 2k 2km
An expression of the form

m
N t) — § akeZkt,
k=—N

where |a,| + |a_,| # 0, is known as trigonometric polynomial of degree N. Likewise,

S~ 3 ape™ is known as trigonometric series.

n=—oo

Definition 1.4. For n € Z, and f € L'(S'), the nth Fourier coefficient of f is defined by
R o[
== T E(t) dt
Foy =5 [ e

Definition 1.5. The Fourier Series of f € 0[31(5 1) is the expression of
fye D2 e
Hence, the n’th partial sum of the Fouri;r Series (FS) is
D=3 Fwen

k=—n
is a trigonometric poly of degree n.

Lemma 1.6. Let f,g € L'(SY), then

i) FT9m) = ) + 4(n),

(i) af(n) = af(n), aeC

(i) F(n) = (), o
(iv) fthof( ) = f(t—to), to € S", then (7, f)" (n) = e f(n)
(0) |f(m)| < 5= [1f(®)]dt = || f[lx

Corollary 1.7. If f, € LY(SY) and || f; — f]l1 = 0, then f;(n) — f(n) absolutely (or even
uniformly).

Theorem 1.8. Let f : [0,2n] — C C R. Then f is absolutely continuous if and only if
f! exists a.e. and
+ / f'(t)dt
0
(For a proof, see Carothers p.374.)

Theorem 1.9. Let f € L'(S') and f( = 0. Define

/fds
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Then F is continuous 2m-periodic function and

F(n)==——=, n#0.

Proof. For t, — tg

Flt) = Fta) = [ xinen(s)f(5) s

Since X4 () f(s) — 0 point wise a.e. and f € L'(S), by DCT, it follows that
F(ty) — F(ty) — 0 as k — oo.
Hence, F is continuous on S*'.

Notice that
Z|F tr) — F(ty—1)| < Z/ Xitx_1,tx) (8)[ S (5)]ds.

Hence, RHS tends to “0” when [ — oo. ThlS implies that F' is absolutely continuous.
Thus, F' is differentiable a.e. Also

t+27
F(t+27) — F(t) = / f(s)ds = f(0) = 0.
Now, integrating by parts, we get

F(n) = 1/% e (t)dt = — / e dt—lf()
"= on 0 —in "

Example 1.10. Let f(0) =0, - < 6 < . Then
n 1 —inf ( 1)n+1
f(n)=— 86 df = ———, n#0.

2T m
f(0) = 0. Thus,

( n+1 n+1 sin @
0) ~ =2
JO)~ ) —— S e .
It’s easy to see that Series on RHS is pointwise convergent but showing it converges
to f(#) is not easy, as we see later!

Example 1.11. f(0) = "% 0 <9 <2r
T > cosnb
FO)~ =+

2
12 — n

The Fourier Series is uniformly convergent, but it converges to f() is not easy.

Theorem 1.12. For f,g € L*(S'). Define convolution of f and g by
27

h(t) = fxg(t) = % i f(t—s)g(s)ds.
Then h € L'(S") and |[h[ly < [[fllllgll
moreover, h(n) = f(n)g(n).
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Proof.
r00f. X
i< o= [ ([t iatolas ) ar

=5 / ( / £t — $)|dt)|g(s)|ds (by Fubinis theorem)
— 5= [ Wfllgts)ids = 171l

Further

urther, ) . »
h(n) = %/h(t)e "t
1

=43 (/ ft— s)e_m(t_s)dt) g(s)e " ds
— 5 [ Fmg(yema

=5 n)g(s)e "°ds

= f(n)a(n).

Question 1.13. Does there exists f,g € L'(S?) such that f * g(s) =17

Let f € L'(S') and ¢(t) = €™ then
o (0= 5 [ 16)em s = e fin).

27
Hence, if
N
Py(t) = Z cne'™,
n=—N
then .
Py f(t) =Y caf(n)e™.
n=—N

that is convolution of a trigonometric polynomial with any function is a trigonometric
polynomial. Now, consider the Fourier series of f € L'(S%) as

ft)~ Y flne.

Let
N N
Dy(t)= > €™ and Sy(f)(t)= D f(n)e™.
n=—N n=—N

Then
Sn(f)(t) = Dy = f(2).

The function Dy is known as Dirichlet kernel. Further,
_sin (N + 1))

D) =—gi@m 170
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and Dy (0) = 2N + 1. (Hint: put w = €, then Dy/(t) is the sum of two geometric series,
etc.) Hence, the earlier question of convergence of Fourier series can be rephrased as:

Question 1.14. Whether the partial sum of the sequence Sy(f) converges to f point
wise. That is,

(4) lim Dy * f(t) = f(t) ?

N—o0

Recall back the heat-equation (steady-state):
AU =0, U(r0)= Z P
Let

Po)= > rme™  0<r<1,6¢[-mmn]
Then the series on RHS conver_g;_es absolutely and uniformly. Hence,
P,(m) =r™ and we have

Poef@)= > e
The function P,(6) is known as Poisson kernel and can be represented as
1—r?
P.(0) =
(6) 1 —2rcosf +r?
(Hint: Series for P,(0) in terms of two geometric series, etc.)

Thus, we can ask when

liH%PT x f(0)= f(0) 7
r—
The function P, * f is called the Abel mean of Fourier series S(f).
Now, the question is, does there exist a family of “good kernels” (i.e., weight functions
or averaging functions) for the Fourier series that leads the series to the given function?
That is, if f € L*(S'), can we find a sequence K, € L'(S!) such that f x K,, — f?

Definition 1.15. A sequence of functions {K,}>2; is “good kernels” if

(i) 5= | K,(t)dt =1, foralln>1.
(ii) There exists M > 0 such that 5~ [* |K,(t)|dt < M, for all n > 1.
(iif) For each 6 > 0, [5_; <, [Kn(t)|dt — 0 as n — oc.

Theorem 1.16. Let { K, }>°, be a sequence of good kernels on [—m, 7| and f € R([—m,])
(Riemann integrable).

Then (f x K,)(x) — f(x) if x is a point of continuity of f, and the above limit is
uniform if f is continuous on [—m, 7).

Proof. Since f is continuous at z, for € > 0, there exists § > 0 such that | f(z—y)— f(z)| <
¢, for all Jy| < d. Now

Fekna) = 1@ = 5 [ " K)f(x—y) — f@)dy  (by property (i) of K,)
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o | EKlz) — f(2)] < = / I )~ Sy

2
1
+o Ko W) f(z —y) — f(x)|dy
T Jo<|y|<n
€ 2B
< — Ko(y)|dy + — | Ko (y)|dy,
2 |y\<6| W 21 Js<ly|<n

where |f(x)| < B, for all x € [—m, w]. This implies

|f * K, (z) — f(x)] < Ce for large n.
If f is continuous on [—, 7], then we can find one & > 0 that serves for each x. Hence
f * K, — f uniformly in this case. U

Corollary 1.17. If {K,}°°, is a sequence of good kernels in L'(S') and f € L'(S"),
then
f*K,— f in LYS".

Proof. Since C([—n,n]) = L'([—m,7]), for f € L' and € > 0, there exists g continuous
such that |f(x) — g(z)| < € for all x € [—m, 7]. That is,
If = glly < 2me.
From the above result g x K, () — ¢ uniformly, that is
lg * K, (z) — g(z)| < € for large n, and for all =
(2) = |lg* K, — gl < 2me
This implies,
1 * K = flle < I(f = 9) % Kallo + lg * Ko = glly + [1f = glh
< I = gl Kally + 4me

<e.l+4dme
for large n. U

Remark 1.18. Dirichlet Kernel is not a good kernel for Fourier series.
sin ((n + 1)t
S1n (5)
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Since |sinz| < |z|, it follows that

[zt [ (o )|

2 pebr
= — | sin t|—
T Jo t

n Lk .
ZEZ/ ]smt’dt

T Jo—n. L

> Qi L /;m | sin ¢|dt
- — sin
- km ).

k=1 (k—1)m

n

=1
as n — oo. That is, Dirichlet Kernel D, fails to satisfy property of a good kernel.

In fact, it is also clear from the above calculation that
/ |D,(t)|dt /0 asn— oc.
o<[t|<m
However,
1 ™
— D, (t)dt = 1.
- [ pu

Thus, if we write

where

k
Di(t) =) e,
=k
then we can show that {F,}°2, is a family of good Kernel. This is known as Fejer
Kernels, and F), x f is known as Cesaro sum of the Fourier series for f.

In general, for a sequence {a,}32, of complex numbers, let S,, = a; + ...+ a,. Then
the series Y a,, is said to be Cesaro summable if

_Sit S,
" n
is convergent.
Example 1.19.
L—141=14-=> (1)
n=0
then S, = 0 (if n even), S, =1 (if n odd), and hence o,, = Wf}il — 2.

Let
So(f)(@) + -+ Sn—l(f)(x)_

n

on(f)(x) =
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Since S,,(f) = f * D, it follows that o,(f) = f * F,,, where
o _ Dot Dyt .+ Doy

n

(ii) Fn(O) =1 (since F,, continuous at x = 0).
(ili) 5= J" Fu(t)dt =1.
Notice that for 4 > 0, there exists ¢; > 0 such that
sin? (%) >, 0 < |z| <.
Hence, F,(z) < n—ié, Vx > . Therefore,

Exercise 1.20. Q) Fu(z)=1 st((m)) if n #0.

/ Fn(x)dxg(ﬂ_d)l%Oasn%oo.
6<[z|<m € n
Hence {F,}22, is a family of good kernels.
Thus, if f € R[—7, 7], then the Fourier series is Cesdro summable to f at the point of
continuity of f, and uniformly Cesaro summable if f is continuous.

Remark 1.21. If f € R[—7, 7] and f(n) = 0 for all n € Z, then f = 0 at all points of
continuity of f. Since
ji: f ZM

k=—n
fxF,(t) =0 = f(t)=0,
if f is continuous at t.

1.2. Uniqueness Theorem.

~

Theorem 1.22. If f € L'(S?) is such that f(m) =0 for allm € Z, then f =0 on S*
a.e.

Proof. For f € L(S') and & > 0, there exists g € C'(S') such that ||f — g||; < e. Now
Ifll < I f * Fo = fla
< fxBn =g Eulli+llg * Fo = glly + llg = flh

<f=glli- 1+ llg= Fo =gl + llg = fll.
Since g is continuous, for € > 0, ||g * F,, — g||1 < € for n > N,. Hence,
Il f]l1 < 3e for all € > 0.
Thus, ||f]1 =0 < f=0a.e. O

Remark 1.23. A continuous function on S* can be uniformly approximated by trigono-
metric polynomials. That is, if f € C[—n, 7| and f(—7) = f(7), then o,(f) = f* F,, is a
trigonometric polynomial and we know that f*F,, — f uniformly. That is, { f*F,, : n € N}
is dense in {f € Cl—m, 7] : f(7) = f(—m)}.
We also mention that if f € L'(S"), then for € > 0, there exists Ny € N such that
|f*F,— fllh<e, n> N
Hence, trigonometric polynomials are dense in L'(S%).
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1.3. Riemann-Lebesgue Lemma.
Lemma 1.24. If f € L'(S"), then limy, ., f(n) = 0.
Proof. For € > 0, there exists a trigonometric polynomial P such that ||f — P||; < € (
where P = f x F,, etc.). Let |n| > deg P. Then
@)= 1) — PO) < If — Pl <€ if [n] > deg P.
That is, | f(n)| < € for large n. Hence, lim,| f(n) = 0. O

1.4. Abel Means Summability. A series >~ a, is said to be Abel summable to s

if the series
o

A(r) = Z apr"

n=0
is convergent for each 0 < r < 1, and lim,_,; A(r) = s.

Example 1.25. Every convergent series is Abel summable Consider

1-24+43—-445—. _Z "(n 4 1).
Then
> 1 1
A(r) =) (=1 (n+ 1) - =
e (1+r) 4

Show that the above series is not Cesaro summable.

Now, consider the Fourier series of f € R[—m, 7| as
o0

He S fmpen

Let nzoo
A00)= 3 e
then A
A f(0) = (f = P)(0)
where
n| _in 1—- T
(+) Z rite™? = 1 —2rcosf +r2

Lemma 1.26. P,,(Q) is a good kernel in the following sense:
= [P(0)dd =1
(11) lunrﬁl f5<|9|<ﬂ (0)d0 =0,  for all 6 > 0.
Proof. (i) easily follows from (x), since the series converges uniformly for each 0 < r < 1.
To prove (ii), let £ <r < 1. Then
1 —2rcosf+7*=(1—7)*+2r(1 — cosf)
For 0 < § < |0] <, 1—2rcosf+r? > cs. Hence,

1_2
PO <—"  foralls>0.
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)
! P(0)do < 2"

= — —0asr — 1.
2T Js<joj<n Cs

Theorem 1.27. Let f € R[—n,x|. Then

(i) A.f(0) = (P, x f)(0) — f(0), if 0 is a point of continuity of f.
(ii) A,.f — f uniformly if f is continuous.

Proof. Proof of this result is same as for the Fejer kernel when we consider continuous
parameter r € (0, 1). O

Corollary 1.28. Since C(S') = L(S"), it follows that
|\Posf—fll. =0asr—1 for feL'(S")

Theorem 1.29. Let U(r,0) = f *x P.(0). Then

(ii) U is twice differentiable on the unit disc D = {re® :0<r <1,—7 <0 <7}

(iii) If 0 is a point of continuity of f, then U(r,0) — f(0) as r — 1, and the limit is
uniform if f is continuous on E = [—7,m|.

(iii) If f is continuous on E = [—m, x|, then U(r,0) is the unique solution of AU =0
with lim, ;, U(r,0) = f(0).

Proof. (i)
Ur,0)= Y r"f(n)e

Since the series and its derivative (with reslge:ct to r and @), both are uniformly convergent,
term-by-term differentiation is allowed. In fact, U(r, ) € C*°-function on D. Since

AU = _aQU + la_U iaQ_U

o2 rOr 12 002
it is easy to verify AU = 0, if U = P, x f. A proof for (i) is followed by the previous
result.
(iii) Let v(r, 8) be another solution of AU = 0 with lim,_,; v(r,0) = f(#). Then
v(r,0) = Z an(r)e™ (- Av =0)

where - | g

ay(r) = By /7r e~y (r,0) do
Since v is two times differentiable,

1 " 82 —inf 2
- —avz’U(T, 0)e™"df = —n“a,(r).
Hence, from -
2 2
y ov 10v 1 0% ~0,

. T o2 ror | r2oe?
it follows that )

1 n
al(r) + ;a;l(r) — ﬁan(r) =0.
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This gives
an(r) = Ay + Br ™", if n # 0,
Since v is bounded on D, letting » — 0 implies B,, = 0. That is,
v(r,0) = ZAnrneinG niform, 16)

_ 1 —inf
— A, = 27T/f(e)e dh.

For n =0, Ag(r) = Ay = 5= [7_ f(t)dt. Thus for each 0 < r < 1, Fourier series of v is

same as for u. By uniqueness it follows that u = v.
O

Exercise 1.30. If {J,}°°, and {K,,}5°, are two families of good kernels for L'(S'), then
{Jn * K,}52, is a good kernel for L'(S').

(1)

1 [7 T /M1 [T
% _ﬂ Jn * kn(t)dt = % B % /;W Jn(t — S)kn(S)det
1 [ 1 1 [7
= % - % (% /ﬂ- Jn<t — S)dt) kn(S)dS
1 s
=5 1-ky(s)ds ( since L'(S?) is translation invariant)
™ —Tr
=1

(i)
1 [7 1 [7
— |Jn*kn(t)|dt§2—/ Mk, (s)|ds < MN < oo
™ —T

2m ) .
(iii) Let § > 0, then

/ |Kn*Jn(t)|dt§/ (/ |Kn(t—s)|dt) o (s)]ds
o<|t|<m s=—m o<|t|I<m
Let |s| < 0/2, thenr =t —s € (=§/2,6/2). Now

(**)/ (/ \Kn(r)\dr> | J,.(8)|ds — 0 as n — oo,
|s]<d/2 8/2<|r|<m

since f5/2<|s_t|<7r | K, (t — s)|dt — 0 as n — oco. (Exercise)

Since |s| < /2, (use the fact that 7, f — f is continuous on L'(S')). That is, if
| K, (t)|dt — 0 for all § >0,

o<|t|<m
then

/6<|t|< (Tl (1) — K ())dt| < /6<|t< (T K (t) — K, (b)) dt < ¢

For € > 0, there exists ng € N, such that f‘t|>5 |K,(t)|dt < e for all n > ny and for small
|s| < §'. However,

/ Kt — 8)||Tu(s)|ds dt < / M1 (s)|ds — 0 as n — oc.
|s|>d6/2 J|t|>0

|s|>d/2
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Lemma 1.31. Let f: [—7,n] — C be such that

[f(x) = f(y)| < Mz —y| for all z,y € [, 7]
for some M > 0. Then S,,(f) — f uniformly. Note that |xr—y| = min{|z—y|, |[t—y+27]|},
that is, the distance between x and y modulo 2.

Proof. Calculate

Sn(f)(x) = flz) = % /_Tr (f(x—1t) = f(2))Dy,(t)dt
Since
Dult) = Sms(i(xiz:;;))t)’ t#0,
8.07)0) = £ < 5| [ (7 =)= 1) S 2 sintas
—l—% /ﬂ(f(as —t) — f(x))cosntdt‘ .
Let . .
g(t) = f( +t}2_ /() co8 o, t#0.

Then |g(t)| < 2M |2, if t # 0.

sint/2
Since limy_,¢ (/t 757 = 1, it follows that g is a bounded function on [—7, 7] and continuous

on [—m, 7|\ {0} Hence, g € R[—m, 7].
Let h(t) = f(z —t) — f(x). Then

ﬁMW%ﬂMS7M omwm+—J 1) cos(nt)d

lg(n) — g(—n)| + §\h(n) + h(=n)| = 0 (by R-L Lemma)
whenever = € [—m, 7]. 0O
Corollary 1.32. If f € R[—ﬂ',?‘l‘] and f is differentiable at xo, then S,(f)(xo) = f(xo).

flzo— t t
Define g(t) = 70
—f (:1:'0), otherwise
Corollary 1.33. If f € C'[—n,«], then S,(f) — [ uniformly. (Hint: Use MVT.)
Notice that if f is piecewise C!-function, then S,(f) — f uniformly too.

Question 1.34. Does every continuous function f on S! have a Fourier series which
converges to f at each point of S1?

To discuss this, we need the following lemma.

Lemma 1.35. Let f € R[—n,w| and f is bounded on [—m, | by M. Then there exists a
sequence f, of continuous functions on [—m, | such that

(i) |fu(x)] < M foralln € N, z € [—m, 7.

(i) [T |fulz) = f(z)|dz — 0 as n — oo.
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Proof. First consider f as a real-valued function. For € > 0, there exists a partition P of
[—7, 7] such that
(1) U(P7f>_L(P7f><67
where
P={-rm=xy<m< - <p<zrgy<--<zy=7}
For x € [x;_1, ], define g(z) = sup{f(y) : z;i—1 <y < z;}. Then g is bounded by M.

l9(z) — f(2)|de = / (9(z) = f(x))dz < e (by (1))

Let 6 > 0 and x € (x; — d,x; + ), define g(x) be the linear function joining g(z — ¢) and
g(x+9), and g = 0 near —7 and 7. Then g is a continuous periodic function which differs
with ¢ on N many intervals, each of length less than 2 surrounding the partitioning
points. Hence,

lg(e) — 3(2)] dr < (2M)N(29).

For ¢ sufficiently small,

/ " g(@) - §(0)] de <

—Tr
T

= : |f(x) — g(x)|de < 2e.

For 2¢ = 1, take g = f,. Thus
/ |f(z) — fu(x)|dz — 0 as n — oo.

—T

O

Remark 1.36. If f € R[—m, 7] has only finitely many points of discontinuity, then
gn(z) = f(x) point-wise.

Now, let X = C(S') and define A,, : X — X by

M) = 5.(£)(0).
Then {A,} is a sequence of linear functionals on X and
()] < Dl e = (Al < D0l
We claim that [|A,|| = [|Dy|l that is [[A,]| = [7_|Dy(¢)| dt.

For this, let g(t) = sign D,,(t). Then for each fixed n, ¢ has only finitely many points
of discontinuity. Hence, there exists g, € C|—m, 7] such that |g,(¢)| < 1 and g,(t) — g(¢)
as n — oo for each t € [—m, 7] (by previous lemma). Therefore

lim An(gm) = lim [ gn(~0)Du(0)

m—oo [

_ / g(—t)Du(t)dt (by DCT)

—T

- / D, (t)] dt = | Dalls

—T

Thus,
ALl = || Dnli = o0 as n — oo.
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That is, {A,}22, is not a uniformly bounded sequence in B(X, D), hence by Uniform
Boundedness Principle (UBP), there exists f € C([—n,7]) such that A, (f) = S,.(f)(0) is
not bounded. Therefore, the F.S. (Fourier Series) of f at 0 does not converge to f(0).

Notice that by translation we can show that for each x € [—m, 7], there exists a function
f € C|—m, ] whose Fourier series does not converge to f(z) at x. In fact, for each = €
[—7, m], we can create a dense class of continuous functions say FE, such that S,(f)(z) —
oo (see Rudin, Real & Complex).

1.5. Convergence of Fourier Series in L?(S'). We have seen that the Fourier series
of f € C(S') need not converge to f uniformly. Similarly, we can also see that the
Fourier series of f € L'(S!) need not converge to f in L'-norm. ( For this, define
Ao (f) = Su(f), f € LY(SY) and use ||F, ||, = 1). However, because of the self-duality of
the space L*(S!), for f € L?(S'), we shall see that S, (f) — f in L*norm.

For f,g € L*(S"), define an inner product by
1 2m -
= — 0)g(0)do
o= [ 1050
and

1 2
1913 =55 [ 1) as

. 0
Let e,(0) = e™. Then {e, : n € Z} forms an orthonormal system (ONS) in L?(S?!),

because
0
<€n7€m>:{7 m#n
1, m=n
Let
1 [ g
n) — &~ _ te "™Mdt = n-
<fae > o ; f( )6 a
Then
Svif) = 3 anen
In|<N
Note that
F= 3 auenLle, forallln| <N
In|<N
Hence,

f— Z anén | L Z bnéen

In|<N In|]<N
whenever b,, € C.
By the Pythagorean theorem,

f:f_ Z (n€n + Zanena

In|<N In|<N

IFIE=1F = D aneals + D laal’

In|<N In|<N

it follows that
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or

(1) A5 = 1F = Sn(DI5+ D laal’

[n|<N
Since f € L*(S), we get 3_,,, v |an|> < || f[|5 for each N € N (Bessel’s inequality).

1.6. Best Approximation Lemma.

Lemma 1.37. Let f € L*[0,27] and a, = f(n). Then
1f = Sx(All <N = D ennlls

In|<N
for any sequence (c,,) C C. Moreover, equality holds if ¢, = a,, for all |n| < N.

Proof.
= Z cnen = f — Sn(f) + Z (an, — cn)en,

In|<N In|]<N
Let a,, — ¢, = b,,. Then by orthogonality,
2 2
(1) F=> caen| =IF=SxDIZ+] D buen
In|<N In|]<N

2 2

So,
1 = Sl < [[£ = D enea

But equality holds if and only if |3 buen |2 = 0, if and only if b, = 0. That is, Fourier
approximation is best among any other approximation of the form Zlnl <N Cnén. 0]

1.7. Mean Square Convergence.
Theorem 1.38. If f € R[—7, 7|, then

L7 ) = Sw(f)(@)Pdr = 0 as N o0
(i.e. |If = Sx(Dll: =+ 0).

Proof. First, we suppose f is continuous. Then for ¢ > 0, there exists a trigonometric
polynomial P such that

|f(z) — P(x)] <e forallx € [—m, x|
Let deg P = k. Then (P, e,) # 0 for |n| = k, and by the best approximation lemma,

1f = Sn()I5 < 7 |f(z) — P(z)Pde < e forall N>k

Now, if f € R[—m, 7], then for € > O there exists g € C|—m, 7| such that
sup |g(x)| < sup|f(x)| < M

/]f z)|dr < €
oM

@) £ =9l = 5= [ 170~ 9@l 1) - gloldo < 5 e

and

Hence,
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Since
(3) lg — Sn(g)||2 < € for all N >k,
from (2) and (3), we get
1f = Sn(Hll2 < [1f = gll2+ llg = Sn(9)ll2 + [[Sn (g = F)ll2

< \/%HH =9 )P

In|<M

M

<\ etetllf — gl
| M

<4/ —e—+2¢forall N> k.
T

O
Corollary 1.39. If f € L*(SY), then ||f — Sx(f)]]2 — 0.
Since
R[—m, 7] = L*|-7, 7]
Further,
11 = 11f = Sn (NI + D lanl
[n|<N
implies
2 _ 2 _ N2 s :
17112 = Nhggﬂ%m = _z_: |7(n)]> (Parseval’s Identity).
The set {e, : n € Z} is a;:omplete orthonormal system (ONS). For this, let f € L*(S?)
and (f,e,) = 0, forallm € N. Then, f = 0 by uniqueness of Fourier series, since

L*(SY) c L*(SY).
Now, for f,g € L*(S")

(f.9) = <131_I>noo (f, €n>enug> = ]\}I_I};O (fsen)(en, g) = Z<f: en)(9; €n)
[n|<N

that is

(fr9) =Y fn)iln)

n=—oo

Exercise 1.40. Let > >° _ |a,|* < co. Then there exists a unique f € L?*(S') such that
f(n) = ay.

Proof. Consider

Zanen(t) = Zanemt
Z ‘anemtf = Z lan)? - 1 < oo

then
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That is, Y a,e™ is absolutely summable in L?(S'). Set f =Y a,e™. Then f € L*(S")
and (f,e,) = a, = f(n). Since the Fourier series of any L? function is unique, it follows
that f must be unique. Il

Now we end the topic of Fourier series by the following optimal result about the con-
vergence of the Fourier series.

Theorem 1.41. Let f € R[—m, 7] and f(n) = O(1/n). Then S,(f)(t) — f(t) if t is a
point of continuity of f; and the limit is uniform if f is continuous on [—m, 7).

Proof. We know that

h % 4] 20N Sidt Ul 2 i
on(fit) = j;n (1 —— f()e”" = Su(f)(t) % n—+1f(‘7)6
Since o, (f;t) — f(t) at the point of continuity of f, we need to show that the residual
in the RHS is negligible. For 0 < n < m, define

(1) omnlfit) = St (/@) + -+ S () (D) _ (n+ Dop1(fit) = (m+ Dom (fit)

n—m n—m
Thus,

1 —
W= St Y ”:—U! F0G)e;,

m

m<|j|<n
where e;(t) = €', For each fixed k € N, from (1),

{(k+Dn+ 1}ogryna (fit) — (kn+ 1) ok (f; 1)
Tkn,(h+1)n(f3 1) = -
— (E+ 1) f(t) —kf(t) = f(t) as n — oc.
Further, if nk < m < (k + 1)n, then

k’—i—l)n
2nA 2A
’m<|j|§(k+1)n j= Zoig1 J

Now, for fixed kg, choose ng > ko such that for all n > ng

|Okon (ko 1)n(f58) = f(O) < €/2 (3)
For € > 0, select kg so large that 2A/k0 < €/2. Then for m > kgng, and for some n > ny,
kong < kgn <m < (1{30 + ].)’I’L

() P tiasn(F:8) = SO < T < £
From (3) and (4), for m > kong = Ny (say), we get [Sn(f)(t) — f(t)| <e.

1.8. Isoperimetric problem.

Theorem 1.42. Let v be a simple closed curve in R? of length |, and it encloses the area
A. Then A < l . Equality holds if and only if v is a circle.

Proof. By using dilation, we can assume that [ = 27. Then A < 7. Let v : [0, 27] C—1> R?
be given by ~(t) = (x(t),y(t)), such that

(1) + (¥ (1) = 1.
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(i.e. v was traced by a particle with constant speed). Then

2
(1) —/ (y/'(1)?)dt = 1
Since 7 is closed, z(t) and y(t) are 27T—p61“10d1C Hence

I(t) ~ Z aneznt’ Z bneint

As 7 is given smooth, v can be considered to be a continuously differentiable curve, i.e.

v € C*Y([0, 27]), and
' (t) ~ Z(m)anemt, y'(t) ~ Z(in)bnemt
By the Parseval identity, (1) gives

(2) Z n?(|an|? + [ba]?) =

n=—oo

Since z(t) and y(t) are real-valued, we have a,, = a—, and b, = b_,. Now, by bilinear
form of the Parseval identity,

[ et - x'(t)y(t»dt\ r

o

n=—oo

1
(3) A=

Here,
Since |n| < n?, from (3) we get:
A<y nf(lanl’ + ) =7 (by (2))
When A = 7, it follows that
z(t) =a_r1e”" + ag+ are™ and y(t) = b_je”" + by + by (from (3))
From (2),

2(|as* + [b1*) = 1, ( since a_; = ay, b_1 = by)
that is X 1
a; = 561‘04’ by = §€Zﬂ

The fact that 1 = 2|a;b, — byay|, we get
|sin(a—f)| =1 = a=p=kn/2
= x(t) = ap £ cos(a + t), y(t) = by £ sin(a + t).
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1.9. Exercise.

1. Determine whether each of the following statements is TRUE or FALSE, providing
rigorous justification in each case.
(a) Let D,, denote the Dirichlet kernel on S'. Does the identity D,, * D, = D,, neces-
sarily hold?

(b) Does there exist a function f € L'(S?) such that > |nf(n)* = co?

n=—oo

2. Suppose [ is continuously differentiable on S 1. Show that
f'(n) =inf(n) foralln € Z.
Deduce that there exists a constant C' > 0 sugh that
[f(n)] < Tl
Does this conclusion remain valid if f is absolutely continuous?
3. Let f be of bounded variation on [—m, 7]. Prove that
L Var(f)
[f(n)] <

27|n|

for all n € Z.
4. For f € L*(S"), establish that
£ 1 " m —inx
f(n):E/_W[f(x)—f@—l—E)]e dz.

Use this identity to prove the Riemann—Lebesgue lemma.
5. Let f € LY(S") satisfy the Holder condition
|f(z+h) = f(z)] < M|h|*
for all z,h € S*, where 0 < a < 1 and M > 0. Show that

6. Demonstrate that Fejér’s kernel F;, can be expressed as
n

Fut)=> (1 — Z-') et

j=—n

7. Given f € L'(S') and m € N, define f,,(t) = f(mt). Prove that
p F(z , ifm|n,

0, otherwise.
8. For f: S' — C, and for z,y € S', define the translation operator 7, f(y) = f(z — y).
Prove that the map x — 7, f is continuous in LP(S!) for 1 < p < oo. That is,
Iruf = Fllpy =0 as [2] 0.
Does this continuity hold for p = 00?
9. Let f € L'(S") and g € L>(S'). Show that

s

tim o [ 7(0)g(nt) dt = F(0)3(0).

n—oo 2 J_



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

FOURIER ANALYSIS 25

Given f € L'(S'), define the convolution operator Ty : L*(S') — L'(S1) by Ty(g) =
f * g. Prove that T} is a bounded operator and that its operator norm satisfies
1T = 11/l

Let P be a trigonometric polynomial of degree n on S*. Show that
1P| < 20| P|oo-
For 1 < p < oo with p7' + ¢! = 1, and f € L?(S"), g € L9(S'), prove that the
convolution f * g is continuous on S*.
Suppose f € L°°(S) satisfies
A k

[f(n)] < Tl

for some constant £ > 0 and all n € Z \ {0}. Prove that
1S, (F) ] < [ flloo + 2k,

where S, (f) = D, * f.
If f is a bounded monotone function on S, show that

oco(t

Let f be Riemann integrable on [—7, 7|. Prove that

> 1)) < oo
from which it follows that f(n) = o(1).
Prove that if the series >~ a, of complex numbers converges to s, then it is both
Cesaro and Abel summable to s.
Prove that if the series ) -, a,, is Cesaro summable to o, then it is Abel summable to
0. Show by counterexample that the converse need not hold.

Suppose the series Y~ a, is Cesaro summable to [. Show that
a
lim — =0,
n—oo N,
where s, = a1 + - - + ay,.

Define u(r,d) = 22=(6), where P,(6) is the Poisson kernel on the open unit disk D =

{reie 0<r<1,0c¢ [—7T,7T)}. Prove that
Au=0 onD
and
lim u(r,0) = 0
r—1

for every 0 € [—m, 7).
Let f be Riemann integrable on [—7, 7| and define the Abel mean
A(NH)O)=f=xP(0), 0<r<l.
If f has a jump discontinuity at 8, prove that
+ —
i A, (1)) = 1)
r—
Provide justification for why
f(0)
2

lim A,(/)(0) #

when f is continuous at 6.
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21. Let f be Riemann integrable on [—7, 7] and o,(f)(0) = f * F,(0), where F,, is Fejér’s
kernel. If f has a jump discontinuity at 8, prove that
i o, (7)0) - L0210
22. Suppose [ is Riemann integrable on [—, 7| such that
fn)y=0 (ﬁ) for all n € Z.

Prove the following assertions:
(a) If f is continuous at 6, then
Sn(f)(0) =Dy = f(0) = f(0) as N — oc.
(b) If f has a jump discontinuity at 6, then
fO0) + f(0-
sx(h)i) - LI

(c) If f is continuous on [—, 7|, then the convergence

Sn(f) = f

as N — oo.

is uniform.
23. Assume f is a Lebesgue measurable function on S satisfying

/2ﬂmdt<oo.
ot

lim S,(f;0) = 0.

Show that
24. For f € L?(S'), prove that

n—1
1 k A
k=0
in the L%-metric as n — 00.

25. Does there exist a function f € L'(S!) such that

o0

> )P =oc?
26. Suppose f € L'(S') vanishes on ;neighborhood of z = 0. Prove that

Sn(f) =0
uniformly near z = 0.
27. Let f be a function on [—7, 7] satisfying the Lipschitz condition
7(0)— F(o)] < MJo— g,
for some M > 0 and all 0, ¢ € [—m, 7.
(a) For
u(r,0) = P.x f(0),
show that g—g exists for all 0 < r < 1 and that

ou <

00
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(b) Demonstrate that

ZV KVM+W'Z

n=—oo

If f is continuously differentiable on S!, show that
[e.e]

Y @) <

Let {G,,}5°, be a family of ggod kernels on S*. Prove that
lim G,(k) =1
n—oo

Let f and g be Riemann integrable on [—m, 7|. Define g(z) = g(—=x).
(a) Show that

1 T

— t)|* dt = (g §)(0).

or | 19 (g *9)(0)
(b) Show that

| 0 o@Pa =50 [ 107 e
Let f € L'Y(S") satlsfy f(In]) = =f(=|n|) > 0 for all n € Z. Show that

LU

n>0 n
If {K,}°, and {J,}°°, are families of good kernels on S*, show that {K, * J,}°° is
also a family of good kernels.
Suppose f is absolutely continuous on S' with f € L?(S'). Prove that

S fm) < IIflh +2

Show that there exists a function f € L'(S') for which the partial sums S, (f) of its
Fourier series fail to converge to f in the L!'-norm.
Let f € L'(S') and S, (f) denote the n-th partial sum of the Fourier series of f. Show

that
Sn(f)
n
If f is Riemann integrable on [—7, 7] and differentiable at tq € [—m, 7|, prove that
Sn(fito) = f(to) asn — oo.
Suppose f € C'(S!) satisfies
(f =1+ )t) = f'(t)

for all t € S'. Prove that f is a trigonometric polynomial.

—0 asn— oo.
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2. FOURIER TRANSFORM

Fourier analysis may be viewed as the systematic study of functions through the ex-
ploitation of their underlying symmetries. In the case of Fourier series, we observed that
when a function is periodic on R, it suffices to restrict attention to a single fundamental
period. Each period contributes precisely one Fourier coefficient, so that the entire func-
tion is encoded by a countable collection of complex numbers. By contrast, when f is not
periodic, a different framework is required, though the central idea remains the same: to
understand how a function on R™ (or on T") transforms under the action of translations.

Suppose the function f transforms under the translation by a multiplication of absolute
value 1. That is,

flx+y)=w(@)f(y), where |p(x)]=1.

f(z) = ¢(x) £(0).
That is, f is completely determined by (. Moreover,
p(2)e(y)f(0) = (@) f(y) = [z +y) = oz +y)f(0)
— oz +y)=e(@)e(y), f#0.
Hence, to determine all such f that transform as above, it is enough to find out those ¢

such that

Then

p(r+y) = o(@)e(y).

Theorem 2.1. If ¢ is a measurable function on R with p(z+vy) = p(z)p(y) and |p(x)] =
1, then there exists £ € R™ such that ¢(z) = *™*¢.

Proof. First, we consider ¢ on R. Let a € R be such that
Al = / o(t)dt # 0.

0
(such an a exists, otherwise by fundamental theorem of calculus, ¢ = 0 a.e.) Then
z+a

o(x) = A/ o(x)e(t)dt = A/ o(x +t)dt = A/ o(t)dt
0 0 T
This implies ¢ is continuous, being the integral of ¢ € Llloc(R). Further, ¢ is integral of
the continuous function ¢, hence ¢ € C*(R). This gives,
¢'(z) = Alp(z + a) — p(z)] = Be(x)
where B = Alp(a) — 1].
d —Bzx

Il — Bz
— e

plaz)] =0 = e P"p(x) = const

Since ©(0) = 1, p(x) = 5. Since |p(x)| = 1, it follows that B must be purely imaginary,
that is, B = 2m £ for some £ € R. O
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For ¢ : R® — C, define p;(t) = ¢(te;), where {e; : 1 < j < n} is the standard basis.
Then

p;(t+5) = p;(t)p;(s)

— @j(l') — €2m£j$,

= o(y <Zy]6g> Hsoy] e

where £ = (&1, ...,&).

Corollary 2.2. If ¢ : T — C measurable and p(z +y) = p(x)p(y) with |p(x)| =1, then
o(x) = ¥ for some n € Z.

reR

Proof. Notice that ¢ is periodic with period 1 if and only if ¢(0) = ¢(1), if and only if
e?™¢ = 1 if and only if £ € Z. That is, p(z) = e*""* n € Z.
O

Exercise 2.3. If ¢ : T" — C measurable and |p(z)| =
p(s+1) = (s )so(t)

gO(t) — 62772'1‘,.017 = Zn

then show that

Thus, we conclude that those functions which transform as above, satisfying
flx4+y) = eme'Ef(-y), for some £ € R" (or Z").
For the time being, we consider functions of the form f(z +y) = @ f(y).

2.1. Fourier Transform.
Definition 2.4. Let f € L'(R) ( or L'(R")), then we define its Fourier transform by
for = [ e

R
Lemma 2.5. Let f € LY(R™). Then

(i) (ryf)(E) = eV f(£), where 7, f(x) = f(
(ii) If g(x) = e f(z), then §(§) = f(§ — @) = (7af)(E)-
(iii) If g(w) = f(=x), then §(&) = f(£).

() If g(x) = [(5); A > 0 then g(£) = Af(AE)

W) 1FE < I (uniformly bounded). A

(vi) If f,g € L'(R™), then (f x g)"(£) = f(£)g(E).

(Hint: use Fubini’s theorem and change of variable.)

Lemma 2.6. Let f € L'(R"™), then f is uniformly continuous on R™.
Proof. Let x,, yn € R™, be such that |xn Yn| — 0. Then

J e < [l

1f () — fya)| =




30 FOURIER ANALYSIS

For each fixed &, e~™*¢ is uniformly continuous. It follows by Dominated Convergence
Theorem (DCT) that

R |f(zn) — f(ya)] = 0 as n — oo.
Hence f is uniformly continuous on R™.

Lemma 2.7. Let f € LY(R) and f is uniformly contz’nuous. Then
lim f(x)=

|x|—o00

Proof. Suppose limy|—, f(2) # 0, then for some ¢, > 0, there exists zo € R such that
|f(z0)| > €0, |mo] > ¢ for all § > 0. By continuity at xq, there exists dp > 0 such

that if |z — 29| < & implies |f(x) — f(z0)| < % implies |f(x)] > €/2. By uniform

continuity, |f(z)| > €,/2 on each interval of length 20y. Since y € (z¢g — 2dp, o — o),
1fW) > e/2 = |vo—y| <d = |f(y)| > % Hence

zo+(n+1)do
/| 5'f<y>|dy:2/ F)ldy > 30 /2 = oo
y|> z

0—ndo =y

We use this fact to prove the following result.
Theorem 2.8. Let f € LY(R) and zf(x) € L*(R), then f is differentiable and
a% €)= ~Gan)(©)

Proof.

f(£ + h /f —w{ _th 1)d

Notice that

e—ixh —izh __

- ‘§|:p|, T%—imash—)().
Hence, the integrand on the RHS is bounded by |zf(z)| € L*(R). By DCT, it follows
that

O = [ fae = (—in)ds = (Zi)(e).
0
Theorem 2.9. Let f € LY(R), and F(z) = [*_ f(y)dy. If F € L'(R) then F(&) =
£1©), ¢ #0.
Equivalently, if f, f' € L*(R) then f’(f) = i&f(&) [ is the derivative of f.

Proof. By Fundamental theorem of calculus (FTC), it follows that I’ = f a.e. on R.
Since F' € L'(R), we have
/ f —z:cy

oo . F 77,$y
/ F(z)e ™Ydx = (

—00
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Since F(z)e™™ € LY(R) and uniformly continuous, by the previous Lemma [2.7]
. 1 -
Ply)=71w) y#0

or

~

fily)=wf'y), it f.f e L'(R).

U
Lemma 2.10. Let C°(R) be the space of all infinitely differentiable functions on R having
compact support. Then
C>(R) = L*(R).

Proof. Let f € L'(R). Since C.(R) = L'(R), for ¢ > 0, there exists g € C.(R) such
that ||g — flli < e. Now, consider ¢ € C®(R) such that [, ¢ = 1. For ¢t > 0, let
oi(x) =t t(x/t). Then [, = 1. Hence, g * oy € C°(R) (exercise). Now

(2.1)  gxpi(z) —g(z) = /(9(93 —y) — g(x))pe(y)dy = /(g(x —tz) — g(z))p(2)dz

#ngm—gmfg/ng—gmw@wz

For small ¢, ||7.g — g|| < e. By DCT it follows that ||g * ¢y — ¢||1 < € for all [t| < 4. So
g * 0r — fll1 < 2¢ for all [¢| < 4.
O

Exercise 2.11. For 1 < p < oo, show that
CeR)=LR),  CX(R)=Co(R).

(Hint: use Minkowski integral inequality in (2.1)).)
2.2. Riemann-Lebesgue Lemma.
Theorem 2.12. If f € L'(R), then limg 0 f(é) =0.

Proof. Since f € L'(R), for € > 0, there exists g € C>°(R) such that ||g — f]|; < €. Given
g is differentiable, ¢/(z) = (iz)§(x), by Theorem 2.9, So |zG(x)| < ||¢/[li < co. Hence
19(&)] = 0 as [§] — oo
Now A
O -sOI < —glh<e
Letting || — oo, then |f(x)| < ¢, for all € > 0. Which implies
lim f(z)=0.

|z|—o00

O

Notice that (L'(R))" € Co(R). In fact, the inclusion is injective but not surjective.
That is, every continuous function vanishing at oo need not be the Fourier transform (F'T)
of an L' function. This is based on the fact that F.T. of an L' function can’t too far from
being an L' function.

Suppose g € Cy(R) is an odd function such that g = f, for some f € L*(R). Then

/ bMda:’ < A < oo, where A is independent of b. This follows by the fact that

1 =z
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fﬂ |Smt|dt < B < 00, where B is free of choice of o, 3 € R. Since f is odd (as g is odd):
r) = —i/ f(t)sintxdt

[l =)o = [ o ([ =re)

_/ FO)B < |[fLB < .

Consider

Notice that, by Fubini’s theorem we can interchange the integrals in above. Hence

) s
ﬁdm < |If]1B < o0

But for
11 x>0
ogx
g(z) = mglw <0
0 z=0

Then g € C'(R) and ¢ is odd. However,

|
/ dx‘ = 00.
1 wlogx

Example 2.13. Let f(z) = e ™, the Gaussian. Then
FE) = 1O = [ e fla)dn = )

We know that
/ e ™ dr =1 (Exercise)

Now
F©) = [ (~2mig) fla)e g
= (=2mizf)N(€) (since f,xf € L'(R))
— () since f'(z) = —2mze)
= i(2mi€) f(£)
= —2m{F ()

That is

Since F(0) = 1, hence F(£) = e ™",

Remark 2.14. For § > 0, let f5(z) = 6Y/2¢=™/5_ Then f5(z) = ¢ ™ — 0 as § — 0,
however, fs(z) — 1 as 6 — 0. Hence, we cannot see both fs & fs exist together. That
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is, fs5 and f5 cannot be localized together. (This is known as the Heisenberg uncertainty
principle; we elaborate later.)

Example 2.15. If f(z) = e™™ then show that |f(z)] < -4

142
Lemma 2.16. Let f,h € L'(R) and
- [ H@e
R

for some H € L'(R), then

Proof.

hx flx) = / Wz — ) (y)dy

- / / H(€)e™ = f(y)dyd
( —zyﬁf ) eixfdﬁ

/\

H f z:pﬁdf
O

2.3. Good Kernels on R. Next, we shall consider seq. of good kernel on R. Some more
of it is known as summability kernel (or approximation of identity).

Deﬁnition 2.17. A seq. of functions {Ky} C L*(R) is said to be “good kernels” if

fK)\ d:L'—l
(ii) [|Kx(z)|dx < M as A — oo.
(ifl) Jiyss [F7(2)|dz — 0 as A — oo, for all 6 > 0.

We can easily construct a sequence of good kernels in the following way. Let f € L'(R)
be such that [, f(z)dz = 1. Write K(z) = Af(Az), A > 0. Then

i) [K\(z)dz = [ f(y)dy =1 (put y = \z)
(11) | K\l =||f]1 < o0 for all A >0
(iii) [i,os [EN(@)|dz = [ s 1fF@W)ldy = [2(f = xqwi<on f)dy,

Since f(z) — X{<ony(®) = 0 as X — oo and |f — xqy<snrf] < 2|f] € L' by DCT
f‘/\|>5 |Kx(z)| = 0 as A — oco. Hence, {K,}r~0 is a family of good kernels.

Theorem 2.18. Let f € L*(R) (or f € LP(R), 1 <p < o0). Then
/\h_{gOHf_K/\*pr = 0.

If f € L*(R) and f is continuous at x, then
lim (£ K)(@) = f(2).
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Proof.
Uﬁ*ﬂ@—f@ﬂSAUﬁwﬂﬂw—w—fwmw 1)
By Minkowski’s integral inequality (exercise), (if p > 1)
Wﬁ*f—ﬂbﬁéﬂﬁwmmf—ﬂb@
For small |y| < 9,

I =l <
Hence,
[Kax s =A< [ Kaledy+ [ 1K@l = Sl do
lyl<d lyl>o

ng+/ () 12]1 £,y
ly|>6

< eM +2|f|lp€, for 6 >0
If f € L°(R), continuous at z, then from (1)
Kax f(0) = f@)] < [ 1K~ ) = Fo)ldy

For small |y| <6, |f(z —y) — f(z)] <e. ﬁence,
|Ky\* f(x) — f(z)] < eM + 2| f|loce, for d > 0.
Therefore,
Ky * f(x) — f(z) as A — oc.

2.4. The Fejer Kernel on R. The Fejer Kernel on R is given by
Ky(x) = AK(\x), where

K = o (S22 [ e

1
(It can be seen by evaluating the integral)

A
K)\(ZL’) = %/)\ <1 — %) eirﬁdg

1 I 4
= %/R (1 - %) X[—A,A}(f)emgdf

1 T
- 5= [ e
§

GA(§) = (1 - T) X[-a (€)

where

is compactly supported.
To show K is a good kernel, we need to show that

/R K(x)dz = 1
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For this, we use the fact that the Fejer kernel for the circle is

1 [sin((n+ Dz/2)\’
Fn(l‘) - n+1 ( Sin($/2) )

and

We know that

im (7)<

For e = 1 — 29 for some small £ > 0, there exists § > 0,
sin(x/2) sind >
it /A B | 1—

(xm) <= (5

sin(8) ) 2 _ sin(z/2)\
) x/2
for |z| < 0 (small). Hence,

ey () (S}’ 1 (et ey
1 (sin(n + 1)1;/2)2‘

~ 2n(n+1) x/2

That is,

: 2
Let K,(z) = 5= <Sm(n+1)w/2> Then

2m(n+1) z/2

1 (sing\* [ I

S / w( dx</ K,(z)dr < — Fn(x)dx.
2\ 0 s 2m

lim K dyc—/ K(x

n—o0

Since,

it follows that

5\ 2
(S”g ) 1<|K|i <1, V6>0 (small)
Hence, {K)} >0 is a family of good kernels.

2.5. Fourier uniqueness theorem. Let f € L'(R). Then, by the fact that
1 o .
Frane = 5 [ (1= 5D xesoea
T JR
it follows that "
r=tim o [ (1B hcn@f@ea o

in the L'-norm. Thus, if f(f) =0 for all £ € R, then by (x)
Ifllh=0 = f=0 ae.
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2.6. Fourier Inversion.
Theorem 2.19. Let f, f € LY(R). Thenl

- 5= [ Feac
holds for almost all x € R.
Proof. We know that

(22) o) = i [ (1—@) fe)eae

holds in L'-norm. Hence, it follows that there is a subsequence such that (2.2)) holds.
Therefore, w.l.o.g., we can assume ) holds a.e. Since

X ( '5’) ol <207 e '®)

and x-ax(§)(1 — %)f(é“) — f(&) as A = co. By Dominated Convergence Theorem, we
get

z:cf
)= Jim 5o [ F@e<as ne
That is, if f, f € L}(R), then

f=0)" ae
O
Notice that Fejer Kernel K € L'(R) (as f Ky(z)dx = f K(x =1) and
(1) Ka(x) = / Cr(©)eds = G (x)
R

where GA(§) = xj—an(§) (1 - %) € LY(R). In fact, Ky € L*(R). Therefore, by
inversion formula,

(from () Gy = (GV)" = K\(z)

That is,
_ =l
Kx(@) = Xp-an(@) | 1= )

2.7. Plancherel Theorem. We know that if f € L*(R), then f = F(f) is a uniformly
continuous function on R. However, for f € L?*(R), f exists uniquely as a function in
L*(R) and satisfies the isometry

11l = 1112

This can be seen using the fact that F is a continuous linear function on dense set
L'NL? to L. R

Further, using Riesz-Thorin interpolation theorem, for f € LP(R), 1 < p < 2, f exists
as function in L(R), where % + % = 1 (This we see later). Finally, for p > 2, we shall see

that f exists as a distribution. That is, f defined by the relation
(F.9) = [ Ha)pyin, weczm).
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~

Theorem 2.20. There exists a unique operator F from L*(R) onto L*(R) having the
following properties:

Ff=Tffor feL'NnL*R),
17 flla = |l f]l2

Proof. For f € L' N L*(R), we define
fe) = [ ot
Then
Frke) = [ Gr@feemas

where G (§) = ( — %) Xj=a ().
Let f(z) = f(—z), and g = f * f. Then g € L'(R) an

oL

Further,

o(z) = / fx— ) Fg)dy = / £+ )@y = {foor f)

As z — f_, is continuous from R — L*(R) and < . > is continuous, it follows that g
continuous and |g(z)| < || fall2]|f[l2 that is |g(x)] < [[f]13.
Notice that g € L*° and g is continuous.

g% Kx(0) = / Gr(E)3(E)de — g(0) a5 A — oo,
That is,

tim [ Ga©a€)d€ = 1 = 9(0)
Then,

lim / Gr(©)|F(6)]2dg = || 2

Since G(§) T 1, by monotone convergence theorem, it follows that

/ F©)Pde = [1£12

that is || f]|o = ||f|]2 for f € L' N L2,

Let Y = {f | f € L' 0 L?}, then

FL'NLAR) 2%y
isometry. We claim that Y = L?(R). By Hahn-Banach theorem, it is enough to show
that Y+ = {0}. If y € Y+ C L?, then the fact that Gye, where e,(§) = €*™*¢ belongs to
L'NL?,
(G,\ez)/\ = (G)\E,x)v = TxGX =1,K,eY
for each 2 € R. This holds, by applying Fourier inversion to Gy = K A7) as Gy € LY(R).
Hence, we get
<TxK)\,]’L> =0 = K, *E(I) =0
But ||[Ky*h — h|l; — 0 as A = oo
= ||hll=0 = Y = {0}
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Hence, . can be extended on L? onto L? with ||.Z f||a = ||f]|2. For this, # : L' N L? C
L?* Y C L2 Let g € L*(R), then there exists .% (g,) € Y with g, € L' N L? such that
F gn Z g and
17 (gn)ll2 = 1lgnl 2
It implies that g, is Cauchy sequence in L' N L?(R). Hence, there exists f € L* such
2 2
that g, R f and it implies that % g, Lz f. Then
17 ()l = llgll-

Remark 2.21. Let f € L*(R), then x[_,,f € L*(R) N L'(R). If we write
bula) = [ s i

-n

then

160 = fllz = [|(X(=nm £)" = fllz = [IX{-nm f = fll2 = 0
Thus,

n

f(€) = lim [ 7" f(2)da

exists in the L2-norm.

Example 2.22. Let H(z) = eI, Show that
. , 2
H(x)= | H(t)e'""dt =
@) = [ HOed =
Note that if f € L*(R), then ||f||o = ||f||]2. By polarization identity
[ 9= [

where f,g € L*(R).
2.8. More on Convolution.

Theorem 2.23. Let f € LP(R), g € LYR) and i + % = 1. Then f % g is an uniformly
continuous and bounded function on R with ||f * gl < || fllpllglle- In particular, if
1<p<oo, }1—)—1-%:1, then fx g € Co(R).

Proof. By Holder’s inequality, we get

|f*g(x)| < /If(w —YllgW)l dy < I fllpllglle = 1L f Il gllq-
Therefore, f * g is bounded. Further,

(7o (f*9))(y) = (f *9)(y)] < / 17 f(y = &) = fly = Ollg()IdE < |7 f = Fllpllgllq-
Hence,

172 (f % 9) = (f * Do < lI7af = Fllpllglle-
Since x — 7, f is uniformly continuous on R — L(R), it follows that f * g is uniformly
continuous on R.
Let1<p<oo,then1<q<oosince%—|—%:1.
For given € > 0, there exists f,, g, in C°(R) such that
||fn - f”p <§ Hgn - gHP <€
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(since C.(R) = LP(R) if 1 < p < 00). Hence,
1o % Gn = [ * gllo < 1fa = Fllollglla + 1 £ ol 90 — 9llo-
Since g, — g in L%, there exists M, > 0 such that | g,|, < M,.
Therefore,

[fr* gn — [ *gllec < eMg + HfHPE
Thus, f, * g, — f * g uniformly, but Cy(R) is a complete space, hence f x g € Cy(R). O

2.9. Riesz-Thorin Interpolation Theorem.

Theorem 2.24. Let (X, S, u) and (Y,T,v) be two o-finite measure spaces. Let p;,q; €
[1,00], i =0,1 and define
L1t t 1 1t

P P P % Q@ @
where 0 <t < 1. If T is a linear map from

LPo(p) + L7 (p) — L*(v) + L™ (v)
I7f

T fllge < Mo~ M| f e
(For a proof, see Real Analysis by G.B. Folland.)

such that

pis =01,
then

Using R-T theorem we see that F.T. of a function f € LP(R), 1 < p < 2, exists as a
function in L9, % + % =1.

2.10. Hausdorff-Young Inequality.

Theorem 2.25. Let 1 < p < 2. Then for f € LP(R), f € LI(R), with ||fl, < |,
where % + % =1.

Note that if 1 < p < 2, then q € [2, 0].

Similarly, if f € LP(SY), 1 < p < 2, then f € 19(Z), with sta=1and 1Flle < £

Proof. We know that F : L}(R) — L*(R) satisfies

W < D6
and F : L*(R) — L*(R) with || F(f)|l2 = ||f]]2-
Let
I 11—t I 11—t
pe 1 2" ¢ oo 2
Note that

1 1 1 1

—+—=1-+-=1.

bt G p g
so we can choose t € (0,1) such that % = L and ]lg = % + L. Hence by R-T inequality,
we get

[FCHla < 1l
Thus, F.T. is a bounded linear function from L? to L9. [
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2.11. Young’s Inequality.

Theorem 2.26. Let 1 < p,q,r < o0 and % —l—% =1+ % If f € LP and g € L9, then
fxge L and
1 * glle < [1fllllgllq
Proof. Case I: if p=1,q = r, then
1f = glle = 11f % glla < [l 1l9llq
(by Minkowski integral inequality).
Case II: if p = 45,7 = o0, (]—1)—1—%:1, 1 < p,q < o0) then
1 glle = 1f = glloo < [If1lnll9lq
(since f*g e Cy(R)).
Case III: 1 < ¢ < o0, fix g € L? and consider T,(f) = f * g. Then
(i) Ty« L' — L7 satisfies | T,(f)llq < I1fIl1llglls;
(i) Ty« L9 — L satisfies | Ty(f)lloo < [Ifll¢llgllg, when § + 5 =1.
For Riesz-Thorin interpolation theorem, let py = 1, qo = ¢; p1 = ¢, ¢1 = oo and
Mo = llglly; My = ligllg- Then
1T ()l < Mo~ My f Iy

where

1 1—1t t t 1 1—1t t 1—1t
Dt Po P q 4z qo0 41 q
Ifwewantqt:r,then%:%. Hence £ =1—t,t=1-1 Thuspit:}%. So,
1 1 1 1 1
- +-=1+-and -+ =1
P q r qa q
Hence,

1o f Nl < 11 flpllglle-
O
Notice that, by the Hausdorff-Young inequality, if 1 < p < 2, then for f € LP(R),
f € LY(R) where % + % = 1. Hence by continuity we can define

f(€) £ lim e f(z) da.
n—oo J_.
However, if 1 < p < 2, we do not know how the f looks like. For example, if f € L'(R),
then

lim | f+ Kx— flli =0
A—00
and )
) o) = Jim 5 [ Ga@) (@)
R
holds in L'(R).

For 1 < p < 2, we can generalize (*). For this, we need to verify the following: If
feLR)and g € LP(R),1 < p <2, then fxg € L? and (f * g)" = f§. Since C°(R) is
dense in LP(R), for € > 0, there exists g, € C§°(R) so that ||g — gu|lr < €.

Note that g, € L'(R) (since second derivative of g satisfies g2, (z) = (ix)*g,(r)) and

(**) Flgn* [) = Flgn) F(f)-
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As F: [P — L9, is a continuous linear map, from (**) it follows that
Flg = f) =F(g)F(f)
Now, consider f = K (Fejer kernel on R), then
(Kx * 9)" = Kxg = Gag,

GA(&) = (1 = [€l/M)x=an(§)
Since g € LY(R), ¢ > 2, it is easy to see that G),¢g € L*(R). By inversion formula,

Kaxgla) = oo [ Ga(@ale)ede,

and Ky * g € L*(R). Since K, is a good kernel and Ky x g — ¢ in LP(R), we can write
the following result:

Theorem 2.27. Let 1 < p <2 and g € L’(R). Then

1 .
ota) = Jim 5= [ G e

where

in LP(R).
Corollary 2.28. {fe L’ 1<p<2 supp f is compact }, is dense in LP(R).
Notice that, if f, g € L'(R), then F(f*g) = F(f)F(g) where F is the Fourier transform.
Question 2.29. Does F' is unique that satisfies F(f * g) = F(f)F(g)?
Note that if we write
F() = [ Hale s = fit),

then F is a continuous linear functional on L'(R). We then shall see that such any
continuous linear functional is only F.T.

2.12. Riesz Theorem.

Theorem 2.30. Let 1 < p < oo and (X, S,u) be a o-finite measure space. Then for
every continuous linear functional T on LP(u), there exists a unique g € LI(X), where

1/p+1/q =1, such that
rf = [ t9

Fourier Transform is unique. Now, suppose ¢ is a continuous linear functional on L'(R)
with ||¢|| < 1 and p(f xg) = @(f)e(g), for all f,g € L*(R). Then by the Riesz theorem,
there exists § € L*(R) such that

o) = [ a)p(s
Then
o7 +9) = [([ £~ nowdnsds = [ glo)ets)dy
where f,(z) = f(x — y). On the other hand,

o(F + 9) = o(F)elg) = o(f) ( / g(y)ﬂ(y)dy)
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Hence

®) [e() = e(DBstay =0, torall g€ L'®).
By uniqueness in the Riesz theorem, it follows that

o(f)By) = ¢(fy), ae y

Since y — f, is continuous on R to L'(R) and ¢ is continuous on L'(R) — C, it follows
that RHS of (*) is continuous. Hence, we can assume f(y) is continuous, except on a set
of measure zero.

By replacing y — x + y, we get

(NP +y) = (fary) = ¢((f2)y) = ©(f2)B(y) = o (f)B(x)B(y).
Since ¢ is non-zero, we can find f € L'(R) such that ¢(f) # 0. Hence

Bz +y) = B(x)B(y) ,
By using Theorem [2.1] there exists t, € R such that 3(z) = e~*. Hence

o(f) = / f(@)etrde = fty).
]

Notice that for every ¢ (except ¢ = 0), there exists unique ¢ € R such that o(f) = f(t),
because if s # ¢, then there exists f € L'(R) such that f(t) # f(s).

2.13. Poisson Summation Formula. For f € L!(R), write

o(t) =27 Z f(t+ 2my).

j=—00

Then ¢ is a 2m-periodic function on R and ||¢||z1(s1y < || f|| 21 (). This can be seen by the

fact that
/ lp(t))|dt = 27 Z/ f(t+ 2mj)|dt
0

j_OO
o0

2mw(j+1) 00
—on Y / fs)as = [ 1fs)as.

j=—o00

Theorem 2.31. Let f € L*(R). Then
(2.3) S oft+2mg) = > fi)e?, VteR,

j=—o0 j=—o0

where f(j) is the Fourier transform.

Proof. To prove this identity, it is enough to show the Fourier coefficients of LHS is f (7).

/ Z f(t+2mj)e™dt = Z/ f(t+2mj)e ™ dt

Jj=—00 Jj=—00

by Beppo—Lev1 theorem.
— [ #we i = o

R
Hence, by uniqueness of the Fourier series, we get the required identity. O
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Example 2.32. Prove that

% e = e
(n+ )2 (sinmr)?
(Hint: Take g(x) = 1 — |x| for |x| < 1, = 0 otherwise in the Poisson summation for-

mula (2.3)).
2.14. LP-Derivative of a Function on R. For h € R and f a function on R, define
x4+ h)— f(x

Definition 2.33. A function f € LP(R) is said to be differentiable in L? sense if there
exists g € LP(R) such that

lim [ D1f — g, = 0.

Lemma 2.34. Let 1 < p,q < oo and % —{—% = 1. Suppose [ € L, has deriwatives f' in LP
sense , then (f % g)' exists in the ordinary sense when g € L7 and
(fxg9) =f*g.
Proof. We know that f x g is continuous and f’ € LP, therefore f’* g is also continuous.
Thus
[ Du(f * g) (@) = [ * g(@)| = [(Duf — ) % g(@)] < |Dnf = fllpllglly = 0 as [h] =0

Hence
(fxg) =[f*g
O

Theorem 2.35. Let f € LP(R),1 < p < oo. Then f has derivative in LP sense if
and only if f is absolutely continuous on each bounded interval [a,b] (except on a set of
measure zero) and its pointwise deriwative f' € LP(R).

To prove this, we need a fact that AC|a,b] is a complete space under the norm:
b

1fllac = 1£(@)] + / F(0)dt.
We know that f € AC|a,b] if and only if f’ exists a.e.,
f' € L'a,b) and f(z) = f(a) + / f(tydi

a

Hence, | fllac < oo and [[f'lac =0 = f(a) =0, F{f) = 0ae. = f(t) = f(a) = 0.
( f/=0ae = f is constant, a non-trivial result (referred to Rayden book). )
Hence, (AC[a,b], || - ||ac) is a normed linear space.
If f, is a Cauchy sequence, then f,(a) and f/ are Cauchy sequences in C and L'([a, b)),
respectively. Let f,(a) — fa, f, — g in L'. Write

ﬂ@=n+/%@ﬁ

Then f is absolutely continuous and

b
I = fllac < 1fala) =l + [ lote) = S0l
Hence, f, — f € AC]a,b]. ’
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Proof of Theorem [2.35. For simplicity, consider p =1, ¢ = oc.

Suppose f has L'-derivative (or derivative in L! sense). Then there exists g € L'(R)
such that limy,_,o || Drnf — g|[1 = 0. By the previous lemma, (f * K)" exists ordinarily and
satisfies

(f = Ky = f'* K\
Note that for each fixed A, the function f * K is smooth on R. Hence by MVT, fx K, €
AC(a,b], Va,be R That is,
() frEa(w) = £+ Kalao) + [ (7 Ko (6) d
Zo

for some x¢ € [a,b]. Since f * K L, f, it follows that

f*K\(z) — f(z) ae.
(as a subsequence of f x K). Hence, we can choose xq € [a, b].

As (f* K))' = g* K\ — g (in L'), we can take limit in (1) and hence

f(z) = f(xg) +/ g(t)dt ae., x€eR.

zo
This implies f' = g a.e. on R, and f' = g € L'(R).

Conversely, suppose f € AC[a,b], for all a,b € R and pointwise derivative f’ exists
and belongs to L'(R). Then

f(x+h})l—f(36) ) = %/0 (f(x +1) — f(z))dt

(since f € AC|[a,b], etc.)
Since f’ € L'(R), by Minkowski integral inequality, it follows that

) 1 |h ) )
HDM—fMSﬁﬂAIMf—fMﬁ

<mf' = fllh <e
whenever |h| < §, as |t| < || < §. Thus, f’ is the L'-derivative of f.
If 1 <pq< oo, % + % = 1, then L?(R) C L (R). Hence, all the above calculations
make sense, and same conclusion is followed by Minkowski integral inequality. 0

2.15. C* form of Urysohn lemma.

Lemma 2.36. Let K be a compact set that is contained in an open set O C R. Then
there exists f € CX(R) such that 0 < f <1, fl|x = 1 and suppf C O.

Proof. Let § = d(K,O¢). Then § > 0, and let

V={x:d(z,K) < §/3}.
Suppose ¢ € C°(R) such that [ ¢ = 1,¢(x) = 0 if |z| > /3. Write f = xv *¢. Then
flk =1,0< f <1, and supp(f) C {z : d(z,K) < 20/3} C O, and f € C°(R). Note
that ¢ can be constructed by choosing
exp (—1%5) |z[ <1

Pl =19, 2] > 1
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2.16. Exercise.

1.

10.

(a) Let f € C*(R) be nonzero and let P be a polynomial of degree n > 1. Determine
whether the function Pf is bounded on R.
(b) Is the subspace
{f € L*(R) : supp f is compact}
dense in L*(R)?

. Suppose f is continuously differentiable on [— R, R]. Prove that there exists a constant

C > 0 such that
c

IFO] < Gk

§#0.

. Let f,g € L*(R). Show that the convolution f x ¢ is a bounded continuous function

on R, and that
‘ llim (f*xg)(x)=0.
Tr|—00

. Let f € L'(R) satisfy f(z) > 0 for all z € R. Prove that there exists § > 0 such that

FO] < f(0), ¢ >0

. For n € N, define

Verify that F, € C.(R) with ||F,||cc = 2. Does the sequence {F,(z)} converge uni-
formly to 2 on R?

. For 1 <p<oo,let fe LP(R) and set

z+1
F(x) :/ f(t)dt.
Show that F' € Cy(R). Does this conclusion remain valid for f e L®R)?
For f € LY(R), prove the identity

26 = [ |10 - (2~ 5)] e as

and deduce the Riemann-Lebesgue lemma.

. Let f,g € L*(R). Prove that

/R FW)ily) dy = /R F(€)g(6) de.

If f € L*(R), deduce the Fourier inversion formula for f.

. For n € N, define

Al
Show that o
f(&) = Pu(&)e 7,

where P, is a polynomial of degree n.
A continuous function f : R — C is of moderate decrease if there exists A > 0 such
that

A

s TER

|f ()
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Suppose f is of moderate decrease and satisfies

/ f(y)e_y262xy dy=0 VzeR.
R
Prove that f = 0.

Let f be of moderate decrease and define
A

Pk =2 [ (1-9) i@ a
Show that f * K, — f uniformly as A — oo.
Let {kx} € L'Y(R) be a family of good kernels. If f € L*(R) N C(R), prove that
f * kx — f uniformly on every compact subset of R.
For 1 < p < 2, prove that
{f € LP(R) : supp f compact}

is dense in LP(R).
Show that X

X={f:feLl'(R)}
is dense in Cy(R).

Let f € C*(R). Prove that there exists g € L'(R) N L>°(R) such that g = f.
For f € L*(R), define the translation operator 7, f(y) = f(y — x). Show that

X ={nf:zeR}
is dense in L?(R) if and only if f (&) # 0 almost everywhere.
Let f € L'(R) with compact support. Prove that f is real-analytic on R. Does
f € L*(R)? What additional conclusion holds if f € C2(R)?
Let f € L'(R) with f > 0. Show that

[ Floe = £0) = 111 A
Suppose f € L'(R) is continuous at 0 and f(£) > 0 for all £. Prove that f € L'(R)
and

~

ﬂ@z/ﬂ@%

R
For n € N, let g, = X[-1,1] * X[-n,n)- Show that g, is the Fourier transform of
sin x sin nx

falt) = ——5 53— € L'(R),
and that || f,|[1 = oo. Conclude that the Fourier transform maps L'(R) into a proper

subspace of Cy(R).
For f € LY(R), define f\(z) = Af(A\z) and

oa(t) = 2m Z it + 2mj).

j=—o0

Show that

Jim{loaflrsy = 1]l m-
For f € L'(R), define

glt) =2m > f(t+2mn).

n=—oo
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Show that g is periodic and
lgllzrcsy < N fller)-
For 1 < p < oo, suppose f € LP(R) and h € R. Define
r+h)— f(z
Aosto) = H0 W = 10)

Show that there exists g € LP(R) such that
it [, — g, = 0
iff f is absolutely continuous on bounded intervals (modulo null sets) and f’ € LP(R).
Does this remain true for f € L*(R)?
Suppose f € L*(R) satisfies
Give an example of f € L*>(0,00) such that f’ exists pointwise on (0,00) but f" ¢
L>(0, 00).
F0r<f € [)/1(]1%”) and g € LP(R"), 1 < p <2, prove that fxg € LP(R") and deduce that

frg=1fa.
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3. DISTRIBUTION THEORY

We know from the previous section that there are functions in LP-spaces which are
differentiable in LP-sense. That is, there exists g € L? such that ||Dnf — g|l, — 0 as
|h| — 0. However, there is a large class of functions which are neither differentiable
nor their LP-derivative exist. Though, there is a large sub-class of such functions whose
derivative can be realized with the help of certain class of differentiable functions, known
as “test functions”.

For example, suppose f is differentiable and ¢ is a compactly supported differentiable
function on R. Then

/_Zf’gz—fglo"oo—/_ng’z—/_ng’,

because ¢ is compactly supported. Therefore, this gives way to realize the derivative of
f € L,.(R). For g € C=(R), write

Ay(g) = / fa.
R
then the derivative of Ay can be defined by

Nilg) = — / fq'
R
In fact, functional Ay is all time differentiable and its k-th derivative is given by
D*Ay(g / fD"g,
where D = *~
In order to discuss “distributions” in detail, we need to derive a complete topology on
C*(R™). Since the space C°(R™) cannot be made complete under sup norm, a complete

topology on C2°(R"™) will be derived from a family of semi-norms (defined on compact
subsets of R™). Thus, the space £(R™) becomes a locally convex topological space.

3.1. Locally Convex Topology. Let {p; : i € I} be a family of semi-norms on a
topological vector space X. For a finite set F' C I, let

Upe = {z € X : pi(a <e}—ﬂVZ€

el i€F
Then each Vg, is convex and balanced. Let

B={Up.:€>0,F CI,#(F) < oo}.
Then the collection
T ={0 C X : for all z € O, there exists U € B such that + + U C O}
is a topology on X.
Obviously, T contains () and X, and is closed under arbitrary unions. Now, let

O=(10; O;eT

=1
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If x € O, then z € O, and there exists Up, ., € B such that x + Up, ., C O;. Write

€ =minj<;<, € and F = Ule F;. Then € > 0 and F is finite and hence
k

2+ Upe C()(@+Upy) CO.
i=1
The space (X, 7)) is known as locally convex topological space.
Example 3.1. Show that a locally convex topological vector space X is Hausdorff if and
only if {p; : i € I} separates points in X i.e., given x € X,z # 0, there exists i € I such
that p;(z) # 0.

Example 3.2. Let X be a locally convex Hausdorff space whose topology is induced by

{pi :i € I'}. Define
_ pn(m B y)
d(x,y) = 27—
() Z 1+ pu(z —vy)
Show that topology 7,4 coincides with 7.
Note that, in general settings, Ur, plays the role of B.(0) in R™ as B(0),e > 0 forms
a local base at 0. Therefore,
B={Upc:€>0,F CI,#(F)< oo}

is a local base at 0 € X.

Definition 3.3. (i) A sequence (x;)2, C X is said to converge to x € X if for all
U € B there exists N = Ny € N such that + —z; € U, for all j > N.
(ii) (z;)2; C X is called a Cauchy sequence if for all U € B, there exists N = Ny € N
such that x, — x, € U for all k,¢ > N.
(i) X is called sequentially complete if every Cauchy sequence in X has a limit in X.

Lemma 3.4. A sequence (z;);°, C X converges to x € X if and only if lim, o0 pn(z; —
x) =0 forallnel.

Proof. Let Uj. = {x € X : pj(x) < €}. Then there exists N € N such that p;(z; — z) <
€ for all j > N, etc. 0

Theorem 3.5. Let {p;}icr be a separating family of semi-norms on a vector space X,
and set

Von ={x € X :p(x) < 1/n}.
Then J ={V,., : 1 € I,n € N} forms a convex balanced local base for a topology T on
X, which makes X into a locally convex space such that

(i) each p; is continuous, and
(ii) A set E C X is bounded if and only if for alli € I, p;(E) is bounded.

Proof. Let x € X and = # 0. Then there exists p; such that p;(x) > 0. Therefore, for
some x, np;(x) > 1, implies ¢ V' (p;, n), a neighborhood of 0. Hence, {0} is closed. Since
& is translation invariant, each {x} C X is closed in (X, 7).
Addition is continuous: Let U be a neighborhood of 0 in X. Then [
(by the definition of topology 7). Let
V=[\V(p:2n:).

icl

iel
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Then V+V CU.

Consider (x1,2z3) +— x1 + 22, and let U be an open set containing x; + x2. Then
U — (z1 + x2) is a neighborhood of 0. Hence, there exists a neighbourhood V' of 0 such
that

V+VC U—(l’1—|—l‘2)
then

(V+z1)+(V+a) CU
Thus, addition is continuous.

Scalar multiplication is contmuous Let z € X and o € C, U and V as above. Then

z € sV for some s > 0. Write ¢ = ;7 and y = 2 +tV, Wlth | —a| < 1/s. Then
y—ar=P0y—x)+ (B —-—a)re|ftV+|f—alsVCV+V CU

Since |S]t < (o] + 1)t = 1, and V is balanced, thus S(z 4+ tV) C ax + U, this implies

scalar multiplication is continuous.

(ii) Suppose E is a bounded subset of X. Since each V(p;,1) is a neighborhood of 0,
there exists k; > 0 such that

= pi(z) < k;, Vi,Vx € E.
Conversely, suppose p;(x) < M;, for all x € E, for all ¢ € I, then for each neighborhood
V of 0,

i=1
which implies

Ec ﬂv pi, 1/M;) = () MinaV (pi, ni)
i=1
Ifn> Mn,; foralli=1,2,. m then
E C an(pi,ni) C nU

=1

Hence E is bounded in (X, .7). O

3.2. Topology of the spaces C>(2) and Dk. We define a topology on C*(£2) which
makes C'°(£2) a Fréchet space with the Heine-Borel property, such that the space
Ik ={p € C*(R") : supp(p) C K}
where K is a compact set in €2, is a closed subspace of C*(f2).
Define a sequence of compact sets in €2 such that K; C K;
Ki={zeQ:d(x,2(Q) >1/i} N B,
where B; = {z € R" : |z| < i}.
For f € C*(Q), define
pn(f) = sup{|D*f(z)| : € K, |a| < N}.
These {py}F_; form a separating family of seminorms that makes C*(2) a metrizable
locally convex topological space (exercise: use the previous theorem).
For x € Q, define d,(f) = f(x). Then each J, is a continuous linear functional in the
topology induced by {pn}%¥_;. That is, pn(f;) = 0 = |fi(z)| < pn(fi) — 0. It is easy
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to see that
@K = m ker (59;
zeQ\K
Hence Pk is a closed subspace of C*°(£2). Notice the collection
Vw=A{feC®Q) :pn(f) <1/N}, N=1,2,...
forms a convex balanced local base at 0 € C*°(£2).
If {f;} are a Cauchy sequence in C*°(£2), then for each Vy, there exists [y € N such
that
fi—ijVN for all 4,7 > Iy
= pn(fi fj) <1/N,
— |Dafl(I)—Dafj(fL')|<1/N, r e Ky
That is, D“f; — g, on each compact set Ky in Q. In particular, f;(x) — go(x). Thus
go € C*(Q) and g, = D%go. This implies that f; — go in the topology of C*°(£2). Hence
C*>(Q) is a Fréchet space and the same is true for Zk.
Suppose E C C*(€) is closed and bounded. Then, by the previous theorem A, there
exists 0 < My < oo such that py(f) < My forall N =1,2,..., f € E.
Thus, |D*f| < My on Ky, |a] < N. Hence,

{Dﬁf cf e E}
is an equicontinuous family on Ky _1, if |3] < N —1. By the Mean Value Theorem (MVT),
(1) [f(@) = F)| < NID' flloolz — y]

Replacing f — DPf in (1), we get
1D f(a) = D f(y)| < 1D flloclle = yll < [ FlInllz =yl
By Arzela-Ascoli Theorem, every sequence (f,) in F has a convergent subsequence.
Hence, F is compact in C*°(Q2). Thus, C*(Q2) has the Heine—Borel property. Since
pn(f

d(f,0) < Z2HTN()JC) <2,

the topology on C'*(f) is not normable.
Now, for each fixed K C 2, Yk is a Fréchet space and
2() = =) = | 7
KCQ
It is known as the space of test functions.

For ¢ € 2(2), define
lelln = sup {|D%(2)] : = € Q, o] < N}
for N=0,1,2,....
Note: Restriction of these norms to Zg gives the same topology as do the semi-norms
{pn}3—;. For this, let K C Q compact. Then there exists Ny € N such that K C Ky,
N > Ny, add for these N > Nj,

lelly = pn(p), Vo € Dk
Since [l¢flv < [l@llv+1 < ... and

pa(p) <prii(ep) < ...
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the topology given by either sequence {|pn}3_n, or {||- ||~ }3¥=n, Will be the same. Thus,
the topology on Zk coincides. Therefore,

1
Vo ={0 e g lloly < 3 |

form a local base for Y.

Notice that ||-||¥_, can be used to define a locally convex metrizable topology on Z(f2),
but this topology is not complete.

For ¢ € 2(Q), suppy C [0,1], ¢ > 0 on (0, 1),

on() = oz — 1) + Jole —2) + —p(z —m)
is a Cauchy sequence in this topology, but (¢,,) is not completely supported. This hap-
pens because {py}F_, is not enough to prevent Cauchy sequences "leaking” toward the
boundary of €, so that we can add more semi-norms to the family {py}%_, that allows
more functions on Z(f2) to be continuous.
Now, we define another topology 7 on Z(2) (in which Cauchy sequences do converge),
however 7 is not metrizable.

(i) Let B={W C 2(Q2) : W is convex, balanced; sets with ZxNW € 7, VK compact C
(ii) ¥ ={ unions of the form o + W, ¢ € 2(Q), W € B}

NOte that The topology 7 is different than the topology generated by the py’s as the
topologies 7 includes more seminorms. For example, let ¢ € 2(Q)), and {z;} C Q : the
sequence having no limit point, for any C; > 0,

p(p) = sup Ci|p(w;)| < oo (since there exist only finitely many i for each )

is a semi-norm on Z(£2) and p restricted to each % is continuous. In fact,

W ={pe2(Q):plp) <C}
is convex balanced and belongs to B as a 7-neighborhood of 0 € 2(2). This forces every
7-bounded set (or Cauchy Sequence) in Z(£2)) to be concentrated on a common compact
set K C . This will be formalized in the next theorem. That is, a sequence (¢;) € Z(Q)
converges to 0 if suppp; C K, Vi=1,2....

Theorem 3.6. (a) T is a topology on P(X2), and B is a local base for T.
(b) ¥ makes 2(Q) into a locally convex topological vector space.

Proof. To prove (a), it is enough to show that for V;, V5 € 7 and ¢ € V) N'V;, there exists
W € B such that ¢ + W C Vi N V;,. By definition, there exists ¢; + W; € 7 such that
pep,+W;, CVi,i=1,2.

Choose K C §2 compact so that ¢1,1s, p € Dk. Since Yy, is open in Yk and ¢ —1; €
D N W, it follows that ¢ — ¢; € (1 — 0;)W; for §; > 0 (it is like if x € B.(z) C W, then
z € (1 —=109)B2(x) C (1 —0)W) By the convexity of W;, we get
So o+ 0;W; C p;+W; C Vi, i =1,2. Hence, ¢ + (6:W1) N (62Ws) C Vi N V4. This proves
(a).

(b) Let o1, p2 € Z(R2) be distinct and

W={ee2(Q):|elo<ller—eallo}
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Then W C B and ¢y € ¢ + W. Since ¢y is arbitrary, it implies that {¢;} is closed set
relative to 7. Notice that for every pair of ¥y, 1, € D(Q),
(th1 + W) + (Y2 + 5W) = (1 +1b2) + W.
Hence, addition is continuous in (D(S2), 7).
Pick ap € C and ¢ € D(€2). Then ¢y + %SW for some s > 0. Let |a — ap| < % and
t = s=—=——=. Then for ¢ € pq+ tW,

2(1+(|eols) *
ap — agpo = ap — @o) + (@ — ag)po
€ K/tW + 1w
€W+ 3W =W,
since |aft < (Ja| + 1)t = 3. Thus,
alpo +tW) C agpe + |a|tW C agpo + W.

Hence, scalar multiplication is continuous. From onward, by D(£2) we mean (D(2), 7).
0

Theorem 3.7. (a) A conver balanced subset V € Z(Q2) is open if and only if V € B.

(b) The topology Tk of Pk C D(Q2) coincides with the topology on Py that is inherited
from 2(Q).

(c) If E is a bounded subset of 2(X2), then E C Dk for some compact K C § and there
exists 0 < My < oo such that

||90||N§MN>VSO€E7 N=012...

(d) D(Q2) has the Heine-Borel property.

(e) {pi} is a Cauchy sequence in P(2), then {¢;} € Pk for some K C Q, K compact.

(f) If p; — 0 in (), then there exists compact set K C Q such that supp p; C K for
all i, and D%p; — 0 uniformly for all .

(9) In 2(Q2), every Cauchy sequence is convergent.

Proof. (a) Suppose V' € 7. Claim V' € B. Consider ¢ € Zx NV. By previous theorem,
there exists W € B such that o + W C V.
= o+ (IxkNW)C DxkNV
Since Y N W is open in Y, it implies Y NV is open in Pk for each V € 7.
Conversely, if V € B, then V € 7, since B C 7.
(b) Let V € 7, then Zx NV € 7 (by (a)). That is, 7N Pk € 7 for all K C .
Conversely, suppose E € 7 for some K C ).
Claim. F = Y NV for some V € 7. Let ¢ € E, then there exists N and § > 0
such that
{ve€Dr:|Y—¢ly<d}CE
or
{tp € Dic: [¥lly <0} CE—o
Let W, = {Y € Zk : ||[¢||n < 0}, then W, N P € 7 (an open ball in Pk ). Hence
W, € B, and
QKH(@+W¢):§0+W¢ﬂ.@KCQO+E—Q0:E
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Let V = U cp(p + W), then
E=|J(p+W,) Nk

pelE
= union of all balls around ¢ € F

=V N Yk.

(c) Let E be a bounded set in Z(2). Suppose E ¢ Pk for any K. Then there exists
om € FE and a sequence {z,,} € € having no limit point such that ¢,,(x,,) # 0,
m=12,...

Let
W = {go € 2(9) : |o(xn)] < %gpm(xm),m =1,2,.. }

Since each K contains only finitely many z,,,

WnNYg = {tp € Dk ()| < %g@m(:vm)}
is open in Zk. For this, let ¢ € W N Pk. Then |p(xm)| < =|om(zm)|,m=1,2,...1
Let

p(p) = sup |¢(zy)] < €, where C) = max — @, (zm)|
1<m<l 1<m<l

Since p is continuous, it follows that W N Yk is open in Y. Thus W € B. Since
©m & mW for any m, it follows that F is not bounded.
Thus every bounded set £ C Z(€2) must lie in some Zg. By (b), E is bounded in
Dk . This implies
sup{||[¢¥||v v € E} < My <0, N=0,1,2,...

(d) It follows from (c), since Yk has the Heine-Borel property. If E is a closed and
bounded set in Z(12), then F is closed and bounded in %, hence compact. Thus, £
is compact in Z(Q2).

(e) If {¢;} is a Cauchy Sequence in Z(f2), then it is bounded and hence p; € Py for
some K. By (b), {¢;} is Cauchy Sequence relative to Z.

(f) It is just restatement of (e).

Finally, (g) follows from (b), (e) and completeness of Zk (i.e., Dk is a Fréchet space).
O

Theorem 3.8. Let A be a linear map from 2(2) to a locally convex space Y. Then the
following are equivalent:

(i) A is continuous.
(ii) A is bounded.

(iii) If p; — 0 in 2(R2), then Ap; — 0 in Y.

(iv) For all K C ), the restriction A : P — Y is continuous.

Proof. (i) = (i1): Known.

(i) == (i17): Suppose A is bounded and ¢; — 0 in Z(Q2). Then p; — 0 in some
and hence A/Zy is bounded. Therefore, A : Zx — Y is continuous, and thus Ap; — 0
inY.

(i1i) = (iv): Suppose {¢;} C Pk and ¢; — 0 in Dk. Then by (b) of the previous
theorem, p; — 0 in 2(2). By (iii), A¢; - 0in Y.
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(iv) = (i): Let U be a convex balanced neighborhood of 0 in Y, and write V' =
A7Y(U). Then V is a convex, also balanced set in Z(f2). By (a) of the previous theorem,
V e 7 if and only if Zx NV C 7 for each K C Q. By (iv), Zxk NV € 7, hence V € 7.
Hence A is continuous.

O

Definition 3.9. A linear functional A on 2(2) which is continuous in the topology 7 of
2(0) is called distribution.

The space of all distributions is denoted by 2'(f2).

Theorem 3.10. Let A be a linear functional on (2(S2),7). Then the following are equiv-
alent:

(i) Ae 2'(Q).

(ii) For each compact set K C ), there exist N € N and C' > 0 such that
() AU < Cllwlly  Jor all b €

This result is nothing but equivalence of (i) and (iv) in the previous theorem.

Note that if IV in (%) is independent of the choice of K, then the minimum of such N’s
is called the order of the distribution A. If no such N exists, then we say A has oo
order.

Remark 3.11. Since each Zf is closed, it is obvious that Zx has no interior in Z(£2).
Since there exists a countable sequence of compact sets in 2 such that Q = | J;2, K;, K; C
K11 we get

G(Q) = [OJ P,

Since Cauchy sequence in Z(£2) does converges_ in 2(Q), by the Baire Category Theorem,
2(92) cannot be metrizable.

Example 3.12. Let f € L'°(R"), then
Ale)= [ fo. v e D@

defines a distribution on D(R"™). However, every distribution cannot be generated by a
function in this way.

For example, Dirac distribution dy cannot be produced by any f € L;,.(R™).

On contrary, suppose, there exists f(# 0) € Ljo.(R"™) such that do(¢) = [ fo for all
¢ € D(R™). Consider ¢. € D(R™) such that support of ¢. C B.(0), 0 < . < 1, . =1
on B./5(0). Then

(o) = [ fo.

— 1=.(0) = f%g/ |f| = 0ase—0.
B:(0) B:(0)

However, every distribution is weakly assigned to some derivative of a continuous function.
We see it later. Notice that

100(0)| = [ (0)] < [lollec = llllo, Voo € D(R™)
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Hence, ¢y is a distribution of order 0.
Example: Let © be a Radon measure on (2. Then

M) = [ o(@)duto)
defines a distribution and
IA(©)] < |lellopt(K), ¢ € Dk, and for every choice of K, compact in 2.
Hence, A = A, is a distribution of order 0. Later, we see that every distribution of order
zero is given by a Radon measure.

3.3. Local Equality of Distribution. Let A; € D'(Q2), i = 1,2, and let O C 2 be open.
Then we say A; = Ay in O if
A = Ay, Vo € D(O).

For example, if f € L'/(R) and ¢ € D(O), then A; = 0 if and only if f = 0 almost
everywhere on O.

Similarly, if 1 is a Radon measure, then A, = 0 if pu(B) = 0, for all B € B(0), the
Borel o-algebra on O.

Therefore, distribution can be discussed locally, and that leads to ways to describe
distributions globally, if its behavior is known locally.

For this, we need to describe “partition of unity”.

Theorem 3.13. Let A ={0;;i € I} be an open cover of Q. Then, there exists a sequence
{ti}ien C D(Q) with 1p; > 0 such that

(i) each v; has support in some O; € A,
(i) D entilz) =1, Vo € Q,
(iii) for each compact set K C Q, Im € N and an open set O D K such that
Pi(z) + ...+ n(z) =1, VzeO.

The collection {1;} is called a locally finite partition of unity in 2 subordinate to the cover

A of Q.

Remarks: From (ii) and (iii), it follows that each point x € € has an open neighbor-
hood that intersects the supports of only finitely many ;.

Proof. Let S = {p1,ps,...} be a countable dense set in .
For r; € Q, write B; = B,.(p;), a closed ball that is contained in some O; € A. Let
Vi = B,,j2(pi). Then, Q = |, Vi; since S = Q, we can construct ; € D(2) such that
0<p; <1, p;=10nV,;, p; =0 outside B,;.
Define 9y = ¢1, and inductively write
(1) Yirr =1 =) (1 —@i)pir1, i > 1.
Then v; = 0 outside B;. This proves (i).
The relation
2) i+ +hi=1=(1—¢1) (1 —¢)
is trivially true if ¢« = 1. Suppose (2) is true for some ¢, then by adding (2) at (i) we get
(2) is true for ¢ + 1. Since ¢; = 1 in V;, from (2), it follows that
() + ...+ Yu(r)=1, VeeVu...uV, =0.
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Since for any x € €, there exists m such that « € V1 U...UV,,, this proves (ii). Moreover,
if K, compact in €, then K C |, V; for some m. This proves (iii).
Now, suppose A1, Ay € D'(2) and for each x € 2, there exists O, open in {2 such that
Ai(p) = Ao(), Vo € D(y).
Then there exists a partition of unity {1s, B;}32, such that

Zm =1, Vze.

Let ¢ € D(Q), then p =3 °, wzgo The summation in RHS makes sense, since support
of ¢ intersects support of only finitely many ;. Thus,

M) =D M) =D Ma(vip) = Aa(9),

since ¢ € D(B;) C D(O,,), for some x; € Q. Hence, Ay = Ay in D(Q). O

Theorem 3.14. Let A be an open cover of ), and for each O € A, there exists Ay € D'(O)
such that
A=A YO N O" 0.
Then there exists unique A € D'(Q) such that
Ap =Ny in O, YO e A.

Proof: Let {1y, B;}}¥, be a partition of unity subordinate to A. Let ¢ € D(R), then
N

p= Z i (finite sum for each )

= Ap,(tip)
Then A is linear. To show that A is continuous on D(R),
let ; = 0 in D(R). Then supp ¢, C K, K’ for some K compact in R.
= supp ¥;p; C KN B, C B,,
= Y;p; = 0in D(B;) (by Leibniz rule)
Hence, Ap; — 0 in C in D'(Q) (the weak* topology of D(R)). Thus, A € D'(£).
Let ¢ € D(O), O € A. Then

Define

and
A, (Yip) = Ao(ip)  (by hypothesis)

Ap =" Ag(thip) = Ao(e).
Suppose A be any other distribution such that
AO’ AON if Ol O// 7A @
Then for each B;, there exists O; € A such that B; C O;
Ap, = Ao, = AB
For ¢ € D(X), ¢ = >_ ¥, supp¥; C B;.

= Z K(dh Z AB 77Z}z Z A((p)

— A=

Thus,
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Theorem 3.15. A distribution A € D'(Q) is of order 0 if and only if there exists a Radon
measure i (possibly complex-valued) such that A = A,,.

Proof. If 3y a Radon measure. Then order(A,) = 0.

Conversely, suppose order(A) = 0. Then there exists 0 < C' < oo, such that |[Ap| <
Cl¢]]oo, Y € C2(Q2). Consider {v;, B;}°,, a partition of unity. Then suppv; C B;,
UB; = Q. Then A is continuous on each D(B;) and hence it can be extended to C(B;).
By Riesz representation theorem, there exists a complex-valued Radon measure u; on B;
such that

Alp) = /soduz-, Vi € C(By).
In particular, for each ¢ € D(B;). Let ¢ belong to D(«£), then

¥ = Z Vi,
Y) = ZA(%‘SO) = Z/%s@dui
ie. Ap= /30 (Z wid,uz’) = /gpdu,

where p = > dp;. O

3.4. Derivative of distribution. Notice that for ¢ € D(Q2) and f € C*(Q),

/Qfsoszlm—/ﬂfcp /fso,

since supp ¢ C K C €. This gives way to define the derivative of distribution A € D'(2)

by
N(p) = —A(¢).

and

or,
O*A(p) = (=1)*IA(8p).

Hence, D*A is a linear map. Since A € D'(2), for compact set K C €2, 30 < C' < oo and
N € N such that

[Ap| < Cllglly, Yy € Dk
Then

[D*A(p)| = |(=D)IIA(D9)| < O|@l| v+ for all ¢ € Dr.

Thus, 0*A € D'(2). We infer that every distribution in D’ is infinitely differentiable in
the weak sense. Since

D*DPp = D*Pp = DP D%y,
it follows that

D*DPA = D’D®A.

Example 3.16. Let f € L] (R). Then show that
D*f € D'(Q) and D°As(p) = (—1)(D>p).

Does distributional derivative of a function is same as its usual derivative?

i.e., whether
/D“fso= (—U""/fD‘”so?
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If f e C*®(R), then
[ prre= v [ oo

by “integration by parts”. However, this is not true in general.

Example 3.17. Let Q = (—2,2), consider f is the Cantor function on [0,1]. Then
f e LY(-2,2) and f’ = 0 almost everywhere.

/f’sozo%—/fsd

Example 3.18. If f is absolutely continuous on each [a,b] C R, then A} = Ap. That is,
/ flo=- / fe'.
(Note that “integration by parts” holds for absolutely continuous and integrable functions

Multiplication by a Function. Let A € D'(Q2), and f € C*(2). Then

(1) (fA)(p) = A(fp) defines a linear functional on D(£2).
(2) D(fp) =D p<q CapD PfDPf - DBy (By Leibniz formula)

Since A € D'(9), for each compact set K in €, there exists 0 < C' < oo and N € Z, such
that

[Ap| < Cllplln, Yy € Dk.
By (2), there exists C" = C'(f, K, N) such that

Ifell < C'llelln, Ve € Dk
Hence,

[fA(p)] < CCl|¢lIn, Ve € Dk.

Thus, fA € D'(Q).

3.5. Sequence of Distributions. Since the topology of D(2) provides a weak*-topology
on D'(Q), that makes D’'(Q2) a locally convex topological vector space, the convergence in
D'(€) is understood by point evaluation. That is, {A;}5°, € D'(€) is said to converge to
A if

Ai(p) = A(p), Vo € D(Q)
In particular, if f; € Lj,.00(R™), then f; — A in D'(R") if

lim f;po = Ap, Yo € D(R").

Theorem 3.19. Let A; € D'(Q) and A(p) = im A;(p) exists for each ¢ € D(2). Then
A € D'(Q) and D*A; — D*A in D(Q).

Proof. Since Ap = lim A;p, Yo € D(Q), it implies that

Alp) = lim Ay(g), Vo € Dye
As Dk is a Fréchet space, by Banach-Steinhaus Theorem, A/Dy is continuous for each
K C Q. Hence, A is constant on D(f2).
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Now,
D(A)(p) = (=1)"IA (D)

= (=Dl 1im A; (D)

= lim D*A;(y)
U

Theorem 3.20. If A; — A in D'(Q) and g; — g in C°(Q), then g;A; — g\ in D'(2).

Proof. Note that g; — g in C*°(2) means the Fréchet space topology of C*°(£2).

(ic., topology generated by p(f) = SUPjaj<naercy |D*F(@)], where © = Ky, Ky C
K41 with local base

Vi = {f €C=(Q) : py(f) < NN = 1,2,...
Now, for fixed ¢ € D(Q2), define a bilinear form B(g,A) = gA(¢) = A(gp). Then B is
co-ordinatewise continuous, and by Theorem 2.17 (Rudin FA, Page 52), and the fact that
C*>(Q) is a Fréchet space, D'(€2) and C are topological vector spaces, it follows that
B(gi, \i) = B(g,A) as i — o0
Hence,
(9:0:)(¢) = (9A)(¢), ¥ € D(9). )

3.6. Support of a Distribution. Let U be an open set in 2 and A € D'(2). We say
that A is zero in O if
A(g) =0, e D(O)
Let W = J{O C Q : Alp = 0}. Then Al = 0. The complement of W is called the
support of A. Note that O forms an open cover of W.
There exists a partition of unity {¢;} in W such that supp; C O; for some O; such
that Alp, = 0, and

o= ¢, VpeDW)
=1
Hence,

Ap = ZA(QOZ‘QO) =0, that is, Aly = 0.
i=1

Theorem 3.21. Let A € D'(2) and set Sy = supp A.
(a) If supp o NSy = & for some ¢ € D(R), then Ap =0 (by definition of support).
(b) If Sh = @, then A =0 (i.e., W =Q).
(c) If v € C=(Q) and ¢ =1 on an open set V' D Sy, then YA = A.
(d) If Sy is a compact set, then A is of finite order. In fact, there exists 0 < C' < oo and
some N € NU{0} such that
[Apl < Cllelly, Vo € D(Q)

Further, A extends uniquely to a continuous linear functional on C*(£2).

Proof. Proofs of (a) & (b) are trivial.
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(c) Ify =10onV D Sy, then
supp(p — ) NSy =0, Ve € D(Q).
Hence by (a), A(¢ — 1) = 0. That is,
Ap =vAp, Yo e D).
(d) If Sy is compact, then we can always find ¢ € C2°(€2) such that v =1 on V D Sh,
for some open set V' C ). Let suppy = K. Then from (c),
Alp) = YA(p), if p € D(Q).
Since A € Z'(12), there exists C; > 0 such that
[Apl < Cillelln, Vo € Dk
for some N € NU {0} = Z" (say). Further, by Leibniz’s rule, it follows that there exists
C5 > 0 such that
[Velly < Collelln,
(i.e. suppy = K cpt). Since Ap = A(Yp) if p € 2(Q), define
Af=A@f) for feC>®(Q).
Now if f; = 0 in C*°(Q2), then D*f; — 0 on uniformly on each compact set K C €. Once
again, by Leibniz’s formula, it follows that
= A(Yf;) = 0in D'(Q).
That is, Af; — 0 in the toplogy of D'(2). Notice that if f € C>(Q2) and K, C Q is
compact, then there exists ¢ € D(Q2) such that ¢ = f on K. (By Urysohn’s lemma, there
exists ¢ € D(2) such that ¢» = 1 on Ky, and hence ¢ = fi) = f on Kj). It follows that
D(Q) is dense in C(Q). (i.e. [[o— fllxk = ||f— fllx < €). Hence, A € D'(Q2) has unique
extension to C(12).
0
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3.7. Exercise.

1.

11.

12.

(a) If A’ is a compactly supported distribution, must it follow that A itself is compactly
supported?

(b) Is every compactly supported distribution necessarily of finite order?

(c) Must the Fourier transform of every compactly supported function in L'(R) be real
analytic?

(d) Determine the distributional support of the function g, where Q denotes the set
of rational numbers.

(e) For n € N, let 4,, denote the Dirac delta distribution at n. Does ¢, — 0 in the
weak” topology of Cy(R) (the space of continuous functions vanishing at infinity)?

(f) Determine the order of A € D'(R) defined by
M) = [ togta) (o)

lz|>1

. Suppose f is a continuous function on R"™ such that [, f¢ = 0 for all ¢ € D(R").

Show that f = 0.

. Let A = Ay, where f is a continuous function on R". Show that supp Ay = supp f.

Does the same statement remain valid for locally integrable functions?

. Show that there exists 1) € D(R) such that ¢ = ¢*) if and only if

[ paela)dz =0

R
for each polynomial p of degree at most k — 1.

. If A € D'(R) satisfies A’ = 0, prove that A = A, for some constant c.
. Show that every ¢ € D(R") can be written as

@ =P + cpo,
where ¢ is a fixed test function in D(R) with [, po # 0.
Show that every ¢ € D(R™) can be written as
¢ = a1 + cpo,
where ¢y is a fixed test function in D(R) with ¢o(0) # 0. Deduce that if A € D'(R)
and xA = 0, then A = ¢d,.

. Determine all f € C*°(R) such that fdé; = 0.
. Show that if A € D/(R) is compactly supported, then A’ is also compactly supported.
. Verify that

(Ap) =™ (n)

defines a distribution on R. Is A compactly supported?

Let H = X(—o0,0) and let h, be a sequence of differentiable functions such that h,, — H
in D'(R). Show that h/, — &y in D'(R). Does the conclusion remain valid if H = x(—c0,0)7
Let A,, € D'(R) be defined by

(Aue) =n(p(2) = o(-1) ).

Determine lim A,,.



13.

14.

15.

16.
17.

18.

19.

20.

21.
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For a > 0, define

e ) = (/ /)m /Md

Show that A, defines a distribution on D(R). Find lim, .o A, in D'(R) and compute
its distributional derivative.
For A € D'(R), define

(G ) = / (A, g) dy,

R
where for ¢ € D(R?), we set ¢,(z) = ¢(z,y). Show that G € D'(R?).
Let A; € D'(R) for i = 1,2 be such that

(A1, ) =0 <= (A2, ) =0.
Show that A; = ¢Ay for some constant c.
If A € D'(R) satisfies A* = 0, prove that A is a polynomial of degree at most k — 1.
Let 2 = (0, 00). Define

Zs@ , 9 €D,

Show that A is a distribution of 1nﬁn1te order, and prove that A cannot be extended
to a distribution on R.

If A € D'(R) has order N, show that A = fN+2) in D'(R) for some continuous function
f.- If A =4y, what are the possible choices for f7

For k € N, define f, = kX(; 2. Show that f, — & in D/(R). Furthermore, show
ok

that although f?(x) — 0 pointwise, the sequence f7 does not converge in the sense of
distributions.

Define
22, <1,
flx)=<R2?+22, 1<x<2,
2x, x> 2.
Find the distributional derivative of f.
Define
e, t>0
t — 7 )
/) —et, t<0.
Show that f” = 26, + f. Deduce that the Fourier transform of f is
A 2ix
flz) =—

1+ 22
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22

23.

24.
25.

26.
27.

28.

29.
30.

It H = X(~o0,0), show that
(a) Hxp(x)= / o (t) dt,
)

(b (56 x H = 50,
() 1x6y=0,
(d) 1*x(6p*xH)=1x0 =1,
(e) (1xdy)*«H =0.
Let {x1} be a sequence of real numbers with lim |x;| = co. Show that 6(,_,,) — 0 in
the sense of distributions.
Determine all f, g € C*(R) such that fdy + gdj, = 0.

Define
e® x>0,
Jz) = {1, z<0.

Show that the Fourier transform of f satisfies (1 —ix) f = H in the sense of tempered
distributions, where H = X(_c,0).
Find the distributional derivative of f(z) = ¢* X[ 1(x).
Suppose f € L>(R) satisfies
f(y)e_yze%y dy=0 VzeR.

R
Prove that f = 0.

Let A be a distribution on R such that 2?A = 0. Show that A = cdy + dd|, for some
constants c¢, d.
For n € N, let f,, = X[o,n)- Find lim,,_, f, in the weak"™ topology of D(R).

Classify all continuous functions on R that define tempered distributions.
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