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1. Fourier Series

The Fourier series addresses the problem of decomposing a given suitably regular func-
tion into a countable collection of symmetric basis functions, and then reconstructing
the original function through their superposition. In particular, it provides a systematic
method for recovering a function from a discrete set of coefficients encoding essential
information about its behavior.

Question 1.1. What are those symmetric regular functions?

We can see the existence of those elementary symmetric functions while discussing
solutions of wave equation and heat equation.

Consider the wave equation

(1)
∂2u

∂t2
=
∂2u

∂x2
and a variable separable solution:

u(x, t) = φ(x)ψ(t)
Then from (1),

ψ′′(t)

ψ(t)
=
φ′′(x)

φ(x)
= λ (say),

Hence,

(2)

{
ψ′′(t)− λψ(t) = 0

φ′′(x)− λφ(x) = 0

If λ > 0, then ψ will not oscillate with respect to time t. Hence, we only consider
λ < 0 and write λ = −m2, where m ∈ Z. Here, we consider countably many m as we
promise/can hope to determine the function only out of countably many known informa-
tions.

Consider ψ(t) = A cosmt+B sinmt, and φ(x) = A′ cosmx+B′ sinmx.
Suppose the string is attached at x = 0 and x = π. Then

φ(0) = φ(π) = 0,
that yields A′ = 0 and B′ ̸= 0.

If m = 0, the solution is trivial. If m ≤ 1, we may re-write the coefficients and reduce
this case to any m ≥ 1, because cos y and sin y are even and odd functions, respectively.

Finally, we have
um(x, t) = (Am cosmt+Bm sinmt) sinmx.

Since the wave equation (1) is linear, it follows that if u1, v are two solutions of (1), then
αu1 + βv is also a solution of (1). Thus, we can think of a general solution of (1) like

(3) u(x, t) =
∞∑

m=1

(Am cosmt+Bm sinmt) sinmx,

for the wave equation (1). Now, suppose the initial position of the string at t = 0 is given
by the graph of the function f on [0, π] with f(0) = f(π) = 0. Then u(x, 0) = f(x).
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Hence,
∞∑

m=1

Am sinmx = f(x).

Thus, given reasonable function f on [0, π] with f(0) = f(π) = 0, we may find Am so that

f(x) =
∞∑

m=1

Am sinmx?

If f is reasonable enough, we may think of evaluating∫ π

0

f(x) sinnx dx =

∫ π

0

(
∞∑

m=1

Am sinmx

)
sinnx dx =

∞∑
m=1

Am

∫ π

0

sinmx sinnx dx.

= An
π

2
Hence, the n’th sine coefficient of f is

An =
2

π

∫ π

0

f(x) sinnx dx.

We can extend this Fourier sine series on [0, π] to [−π, π] by assuming f is odd on [−π, π].
Similarly, we can ask for an even function g on [−π, π] to have expansion like

(4) g(x) =
∞∑

m=0

A′
m cosmx ?

Since, any arbitrary function on [−π, π] can be expressed as sum of odd and even functions,
a reasonable function F on [−π, π] can be thought of having expansion like

(5) F (x) =
∞∑

m=1

Am sinmx+
∞∑

m=0

A′
m cosmx

By using the Euler formula,
eix = cosx+ i sinx,

we can re-write (4) as

F (x) =
∞∑

m=−∞

ame
imx ?

By analogy as to the earlier case, we also see that

an =
1

2π

∫ π

−π

F (x)e−inxdx (4*)

since
1

2π

∫ π

−π

einxe−imxdx =

{
1 if n = m

0 if n ̸= m

The number an is called the nth Fourier coefficient of F .

Question 1.2. Given any reasonable function F on [−π, π], with Fourier coefficients
defined as above, is it possible that

(6) F (x) =
∞∑

m=−∞

ame
imx ?

Joseph Fourier (1768–1830) was the first who declared that an “arbitrary” function can
be expressed as the series (5). However, his idea was implicit and later refined.
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If we look at the wave equation a little carefully, then we come to the fact that it actually
requires two initial conditions. Namely, initial position and initial velocity of the string.
That is,

u(x, 0) = f(x) and
∂u(x, 0)

∂t

∣∣∣∣
t=0

= g(x)

From (3), we get

f(x) =
∞∑

m=1

Am sin(mαx) and g(x) =
∞∑

m=1

mBm sin(mx)

Hence, convergence of series for g requires more decay on Bm.

Now, we consider the case of heat flow in an infinite plate. Namely,
∂u

∂t
= α2

(
∂2u

∂x2
+
∂2u

∂y2

)
.

When steady state reached, there is no “exchange” flow of heat in the plate; implies
∂u

∂t
= 0

That is,

(7) ∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0

A function satisfying (7) is known as a harmonic function. Suppose the metallic
plate is the unit disc

D =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
and

S1 =
{
(x, y) ∈ R2 : x2 + y2 = 1

}
By passing to polar coordinates,

x = r cos θ, y = r sin θ, 0 ≤ r < 1, 0 ≤ θ < 2π,
the steady-state heat equation reduces to

(8)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

Equation (8) together with initial condition u(1, θ) = f(θ) is known as the Dirichlet
problem.

That is, we have given a temperature distribution f on the circle S1 and are waiting
for the temperature distribution inside the disc. Further,

r2
∂2u

∂r2
+ r

∂u

∂r
= −∂

2u

∂θ2
Consider u(r, θ) = F (r)G(θ). Then

r2F ′′(r) + rF ′(r) = −G
′′(θ)

G(θ)
F (r) = λ( say )

Thus
G′′(θ) + λG(θ) = 0 and

r2F ′′(r) + rF ′(r)− λF (r) = 0

Since G must be periodic, it follows that λ > 0. Let λ = m2, m ∈ Z.
G(θ) = Ã cos(mθ) + B̃ sin(mθ) = Aeimθ +Be−imθ
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Case(i): If m ̸= 0, then F (r) = rm or r−m. Now, for m > 0, r−m → ∞ as r → 0, so
F (r)G(θ) is unbounded near “zero”.

Case(ii): If m = 0, F (r) = 1 or log r. Hence, again, the solution is unbounded if
F (x) = log r. We reject these two cases, while the solution is unbounded. Thus, we
consider

Um(r, θ) = r|m|eimθ, m ∈ Z
Since the steady state heat equation (∆u = 0 = ∂u

∂t
) is linear, we can think of

u(r, θ) =
∞∑

m=−∞

amr
|m|eimθ

as a possible general solution for ∆u = 0? Hence, for a reasonable function f on [0, 2π]

u(1, θ) =
∞∑

n=−∞

ane
inθ = f(θ)

Question 1.3. Given a reasonable function from C[0, 2π] with f(0) = f(2π), can we find
the coefficients an so that

f(θ) =
∑

ane
inθ?

1.1. Functions on Circle. Let S1 = {eiθ : 0 < θ < 2π}. Consider the mapping φ : R →
S1 defined by φ(x) = eix. Since φ(x+2π) = φ(x) for all x ∈ R, the map φ is 2π-periodic.
Moreover, φ is a group homomorphism from (R,+) to (S1, ·), with kernel ker(φ) = 2πZ.
Hence, it follows that S1 ≃ R/2πZ, where the induced isomorphism φ̃ : R/2πZ → S1 is
given by φ̃(x+ 2πZ) = φ(x). Now let f : S1 → C be a function, and define

f̃ : R → C, by f̃(x) = f ◦ φ(x).
Since φ(x + 2π) = φ(x), we obtain f̃(x + 2π) = f̃(x), so that f̃ is 2π-periodic. This
establishes a one-to-one correspondence between functions on S1 and 2π-periodic func-
tions on R. Consequently, functions defined on the unit circle S1 can be identified with
2π-periodic functions on R. Through this identification, properties such as continuity,
differentiability, and integrability of functions on S1 may be studied via their periodic
representatives on R.

Further, Lebesgue measure on S1 can also be identified by means of f is integrable on
S1 if the corresponding 2π-periodic function (which again we denote by f), is Lebesgue
integrable on [0, 2π], and we write∫

S1

f(t) dt =

∫ 2π

0

f(x) dx

Now onward, we identify S1 as [0, 2π) and the Lebesgue measure dµ on S1 as the re-
striction of Lebesgue measure on R to [0, 2π). Therefore, dt on S1 is translation invariant.
That is, for t0 ∈ S1, ∫

S1

f(t− t0)dt =

∫
S1

f(t) dt,
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since the corresponding function f on R is 2π-periodic, and∫ 2π+to

to

f(t)dt =

∫ 2kπ

to

f(t)dt+

∫ 2π+to

2kπ

f(t)dt.

=

∫ (2k+1)π

to+2π

f(t)dt+

∫ 2π+to

2kπ

f(t)dt =

∫ (2k+1)π

2kπ

f(t)dt.

An expression of the form

PN(t) =
m∑

k=−N

ake
ikt,

where |an|+ |a−n| ̸= 0, is known as trigonometric polynomial of degree N . Likewise,

S ∼
∞∑

n=−∞
ane

int is known as trigonometric series.

Definition 1.4. For n ∈ Z, and f ∈ L1(S1), the nth Fourier coefficient of f is defined by

f̂(n) =
1

2π

∫ 2π

0

e−intf(t) dt

Definition 1.5. The Fourier Series of f ∈ L1(S1) is the expression of

S(f) ∼
∞∑

n=−∞

f̂(n)eint

Hence, the n’th partial sum of the Fourier Series (FS) is

Sn(t) =
n∑

k=−n

f̂(k)eikt

is a trigonometric poly of degree n.

Lemma 1.6. Let f, g ∈ L1(S1), then

(i) f̂ + g(n) = f̂(n) + ĝ(n),

(ii) α̂f(n) = αf̂(n), α ∈ C,
(iii) f̂(n) = f̂(−n),
(iv) If τt0f(t) = f(t− t0), t0 ∈ S1, then (τt0f)

∧ (n) = e−int0 f̂(n)

(v) |f̂(n)| ≤ 1
2π

∫
|f(t)|dt = ∥f∥1

Corollary 1.7. If fn ∈ L1(S1) and ∥fj −f∥1 → 0, then f̂j(n) → f̂(n) absolutely (or even
uniformly).

Theorem 1.8. Let f : [0, 2π] → C ⊂ R. Then f is absolutely continuous if and only if
f ′ exists a.e. and

f(x) = f(0) +

∫ x

0

f ′(t) dt.

(For a proof, see Carothers p.374.)

Theorem 1.9. Let f ∈ L1(S1) and f̂(0) = 0. Define

F (t) =

∫ t

0

f(s) ds.



8 FOURIER ANALYSIS

Then F is continuous 2π-periodic function and

F̂ (n) =
f̂(n)

in
, n ̸= 0.

Proof. For tk → t0

F (tk)− F (t0) =

∫ 2π

0

χ[t0,tk)(s)f(s) ds.

Since χ[t0,tk)(s)f(s) → 0 point wise a.e. and f ∈ L1(S1), by DCT, it follows that
F (tk)− F (t0) → 0 as k → ∞.

Hence, F is continuous on S1.
Notice that

l∑
k=1

|F (tk)− F (tk−1)| ≤
l∑

k=1

∫ 2π

0

χ[tk−1,tk)(s)|f(s)|ds.

Hence, RHS tends to “0” when l → ∞. This implies that F is absolutely continuous.
Thus, F is differentiable a.e. Also

F (t+ 2π)− F (t) =

∫ t+2π

t

f(s)ds = f̂(0) = 0.

Now, integrating by parts, we get

F̂ (n) =
1

2π

∫ 2π

0

e−intF (t)dt = − 1

2π

∫ 2π

0

F ′(t)

(
e−int

−in

)
dt =

1

in
f̂(n).

□

Example 1.10. Let f(θ) = θ, −π ≤ θ < π. Then

f̂(n) =
1

2π

∫ π

−π

θe−inθdθ =
(−1)n+1

in
, n ̸= 0.

f̂(0) = 0. Thus,

f(θ) ∼
∑ (−1)n+1

in
einθ = 2

∑ (−1)n+1 sin θ

n
It’s easy to see that Series on RHS is pointwise convergent, but showing it converges

to f(θ) is not easy, as we see later!

Example 1.11. f(θ) = (π−θ)2

4
, 0 ≤ θ ≤ 2π

f(θ) ∼ π2

12
+

∞∑
n=1

cosnθ

n2

The Fourier Series is uniformly convergent, but it converges to f(θ) is not easy.

Theorem 1.12. For f, g ∈ L1(S1). Define convolution of f and g by

h(t) = f ∗ g(t) = 1

2π

∫ 2π

0

f(t− s)g(s)ds.

Then h ∈ L1(S1) and ∥h∥1 ≤ ∥f∥1∥g∥1,
moreover, ĥ(n) = f̂(n)ĝ(n).
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Proof. ∫
|h(t)|dt ≤ 1

2π

∫ (∫
|f(t− s)||g(s)|ds

)
dt

=
1

2π

∫
(

∫
|f(t− s)|dt)|g(s)|ds (by Fubini’s theorem)

=
1

2π

∫
∥f∥1|g(s)|ds = ∥f∥1∥g∥1

Further,

ĥ(n) =
1

2π

∫
h(t)e−intdt

=
1

4π2

∫ (∫
f(t− s)e−in(t−s)dt

)
g(s)e−insds

=
1

2π

∫
f̂(n)g(s)e−insds

= f̂(n)ĝ(n).
□

Question 1.13. Does there exists f, g ∈ L1(S1) such that f ∗ g(s) = 1?

Let f ∈ L1(S1) and φ(t) = eint, then

φ ∗ f(t) = 1

2π

∫
f(s)ein(t−s)ds = eintf̂(n).

Hence, if

PN(t) =
N∑

n=−N

cne
int,

then

PN ∗ f(t) =
N∑

n=−N

cnf̂(n)e
int.

that is convolution of a trigonometric polynomial with any function is a trigonometric
polynomial. Now, consider the Fourier series of f ∈ L1(S1) as

f(t) ∼
∞∑

n=−∞

f̂(n)eint.

Let

DN(t) =
N∑

n=−N

eint and SN(f)(t) =
N∑

n=−N

f̂(n)eint.

Then
SN(f)(t) = DN ∗ f(t).

The function DN is known as Dirichlet kernel. Further,

DN(t) =
sin
(
(N + 1

2
)t
)

sin(t/2)
, t ̸= 0
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and DN(0) = 2N + 1. (Hint: put ω = eit, then DN(t) is the sum of two geometric series,
etc.) Hence, the earlier question of convergence of Fourier series can be rephrased as:

Question 1.14. Whether the partial sum of the sequence SN(f) converges to f point
wise. That is,
(4) lim

N→∞
DN ∗ f(t) = f(t) ?

Recall back the heat-equation (steady-state):

∆U = 0, U(r, θ) =
∑

amr
|m|eimθ

Let

Pr(θ) =
∞∑

m=−∞

r|m|eimθ, 0 ≤ r < 1, θ ∈ [−π, π]

Then the series on RHS converges absolutely and uniformly. Hence,
P̂r(m) = r|m| and we have

Pr ∗ f(θ) =
∞∑

m=−∞

f̂(m)r|m|eimθ

The function Pr(θ) is known as Poisson kernel and can be represented as

Pr(θ) =
1− r2

1− 2r cos θ + r2
(Hint: Series for Pr(θ) in terms of two geometric series, etc.)

Thus, we can ask when
lim
r→1

Pr ∗ f(θ) = f(θ) ?

The function Pr ∗ f is called the Abel mean of Fourier series S(f).
Now, the question is, does there exist a family of “good kernels” (i.e., weight functions

or averaging functions) for the Fourier series that leads the series to the given function?
That is, if f ∈ L1(S1), can we find a sequence Kn ∈ L1(S1) such that f ∗Kn → f?

Definition 1.15. A sequence of functions {Kn}∞n=1 is “good kernels” if

(i) 1
2π

∫ π

−π
Kn(t)dt = 1, for all n ≥ 1.

(ii) There exists M > 0 such that 1
2π

∫ π

−π
|Kn(t)|dt ≤M , for all n ≥ 1.

(iii) For each δ > 0,
∫
δ<|t|≤π

|Kn(t)|dt→ 0 as n→ ∞.

Theorem 1.16. Let {Kn}∞n=1 be a sequence of good kernels on [−π, π] and f ∈ R([−π, π])
(Riemann integrable).

Then (f ∗ Kn)(x) → f(x) if x is a point of continuity of f , and the above limit is
uniform if f is continuous on [−π, π].

Proof. Since f is continuous at x, for ϵ > 0, there exists δ > 0 such that |f(x−y)−f(x)| <
ϵ, for all |y| < δ. Now

f ∗Kn(x)− f(x) =
1

2π

∫ π

−π

Kn(y)[f(x− y)− f(x)]dy (by property (i) of Kn)
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⇒ |f ∗Kn(x)− f(x)| ≤ 1

2π

∫
|y|<δ

|Kn(y)||f(x− y)− f(x)|dy

+
1

2π

∫
δ≤|y|≤π

|Kn(y)||f(x− y)− f(x)|dy

≤ ϵ

2π

∫
|y|<δ

|Kn(y)|dy +
2B

2π

∫
δ≤|y|≤π

|Kn(y)|dy,

where |f(x)| ≤ B, for all x ∈ [−π, π]. This implies
|f ∗Kn(x)− f(x)| < Cϵ for large n.

If f is continuous on [−π, π], then we can find one δ > 0 that serves for each x. Hence
f ∗Kn → f uniformly in this case. □

Corollary 1.17. If {Kn}∞n=1 is a sequence of good kernels in L1(S1) and f ∈ L1(S1),
then

f ∗Kn → f in L1(S1).

Proof. Since C([−π, π]) = L1([−π, π]), for f ∈ L1 and ϵ > 0, there exists g continuous
such that |f(x)− g(x)| < ϵ for all x ∈ [−π, π]. That is,

∥f − g∥1 < 2πϵ.
From the above result g ∗Kn(x) → g uniformly, that is

|g ∗Kn(x)− g(x)| < ϵ for large n, and for all x
(2) ⇒ ∥g ∗Kn − g∥1 < 2πϵ
This implies,

∥f ∗Kn − f∥1 ≤ ∥(f − g) ∗Kn∥1 + ∥g ∗Kn − g∥1 + ∥f − g∥1
≤ ∥f − g∥1∥Kn∥1 + 4πϵ

≤ ϵ.1 + 4πϵ
for large n. □

Remark 1.18. Dirichlet Kernel is not a good kernel for Fourier series.

Dn(t) =
sin
(
(n+ 1

2
)t
)

sin
(
t
2

) , t ̸= 0,
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Since | sin x| < |x|, it follows that∫ π

−π

|Dn(t)|dt ≥
2

π

∫ π

0

∣∣∣∣sin((n+
1

2
)t

)∣∣∣∣ dtt
=

2

π

∫ (n+ 1
2
)π

0

| sin t|dt
t

≥ 2

π

n∑
k=1

∫ kπ

(k−1)π

| sin t|
t

dt

≥ 2

π

n∑
k=1

1

kπ

∫ kπ

(k−1)π

| sin t|dt

=
4

π2

n∑
k=1

1

k
→ ∞

as n→ ∞. That is, Dirichlet Kernel Dn fails to satisfy property of a good kernel.

In fact, it is also clear from the above calculation that∫
δ≤|t|≤π

|Dn(t)| dt ̸→ 0 as n→ ∞.

However,
1

π

∫ π

−π

Dn(t)dt = 1.

Thus, if we write

Fn(t) =
D0(t) +D1(t) + . . .+Dn−1(t)

n
,

where

Dk(t) =
k∑

l=−k

eilt,

then we can show that {Fn}∞n=1 is a family of good Kernel. This is known as Fejer
Kernels, and Fn ∗ f is known as Cesàro sum of the Fourier series for f .

In general, for a sequence {an}∞n=0 of complex numbers, let Sn = a1 + . . . + an. Then
the series

∑
an is said to be Cesàro summable if

σn =
S1 + · · ·+ Sn

n
is convergent.

Example 1.19.

1− 1 + 1− 1 + · · · =
∞∑
n=0

(−1)n

then Sn = 0 (if n even), Sn = 1 (if n odd), and hence σn = [n/2]±1
n

→ 1
2
.

Let

σn(f)(x) =
S0(f)(x) + · · ·+ Sn−1(f)(x)

n
.
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Since Sn(f) = f ∗Dn, it follows that σn(f) = f ∗ Fn, where

Fn =
D0 +D1 + . . .+Dn−1

n
.

Exercise 1.20. (i) Fn(x) =
1
n

sin2(nx
2 )

sin2(x
2 )
, if n ̸= 0.

(ii) Fn(0) = 1 (since Fn continuous at x = 0).
(iii) 1

2π

∫ π

−π
Fn(t) dt = 1.

Notice that for δ > 0, there exists cδ > 0 such that

sin2
(x
2

)
> cδ, δ ≤ |x| ≤ π.

Hence, Fn(x) ≤ 1
ncδ
, ∀x ≥ δ. Therefore,∫

δ≤|x|≤π

Fn(x) dx ≤ (π − δ)

cδ

1

n
→ 0 as n→ ∞.

Hence {Fn}∞n=1 is a family of good kernels.
Thus, if f ∈ R[−π, π], then the Fourier series is Cesáro summable to f at the point of

continuity of f , and uniformly Cesáro summable if f is continuous.

Remark 1.21. If f ∈ R[−π, π] and f̂(n) = 0 for all n ∈ Z, then f = 0 at all points of
continuity of f . Since

Sn(f)(t) =
n∑

k=−n

f̂(k)eikt = 0,

f ∗ Fn(t) ≡ 0 =⇒ f(t) = 0,
if f is continuous at t.

1.2. Uniqueness Theorem.

Theorem 1.22. If f ∈ L1(S1) is such that f̂(m) = 0 for all m ∈ Z, then f = 0 on S1

a.e.

Proof. For f ∈ L(S1) and ε > 0, there exists g ∈ C(S1) such that ∥f − g∥1 < ϵ. Now
∥f∥1 ≤ ∥f ∗ Fn − f∥1

≤ ∥f ∗ Fn − g ∗ Fn∥1 + ∥g ∗ Fn − g∥1 + ∥g − f∥1
≤ ∥f − g∥1 · 1 + ∥g ∗ Fn − g∥1 + ∥g − f∥1.

Since g is continuous, for ε > 0, ∥g ∗ Fn − g∥1 < ϵ for n ≥ N0. Hence,
∥f∥1 < 3ϵ for all ϵ > 0.

Thus, ∥f∥1 = 0 ⇐⇒ f = 0 a.e. □

Remark 1.23. A continuous function on S1 can be uniformly approximated by trigono-
metric polynomials. That is, if f ∈ C[−π, π] and f(−π) = f(π), then σn(f) = f ∗Fn is a
trigonometric polynomial and we know that f∗Fn → f uniformly. That is, {f∗Fn : n ∈ N}
is dense in {f ∈ C[−π, π] : f(π) = f(−π)}.

We also mention that if f ∈ L1(S1), then for ϵ > 0, there exists N0 ∈ N such that
∥f ∗ Fn − f∥1 < ϵ, n ≥ N0.

Hence, trigonometric polynomials are dense in L1(S1).
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1.3. Riemann-Lebesgue Lemma.

Lemma 1.24. If f ∈ L1(S1), then lim|n|→∞ f̂(n) = 0.

Proof. For ϵ > 0, there exists a trigonometric polynomial P such that ∥f − P∥1 < ϵ (
where P = f ∗ Fn etc.). Let |n| > degP . Then

|f̂(n)| = |f̂(n)− P̂ (n)| ≤ ∥f − P∥1 < ϵ, if |n| > degP.

That is, |f̂(n)| < ϵ for large n. Hence, lim|n|→∞ f̂(n) = 0. □

1.4. Abel Means Summability. A series
∑∞

n=0 an is said to be Abel summable to s
if the series

A(r) =
∞∑
n=0

anr
n

is convergent for each 0 ≤ r < 1, and limr→1A(r) = s.

Example 1.25. Every convergent series is Abel summable. Consider

1− 2 + 3− 4 + 5− · · · =
∞∑
n=0

(−1)n(n+ 1).

Then

A(r) =
∞∑
n=0

(−1)n(n+ 1)rn =
1

(1 + r)2
→ 1

4

Show that the above series is not Cesaro summable.

Now, consider the Fourier series of f ∈ R[−π, π] as

f(t) ∼
∞∑

n=−∞

f̂(n)eint

Let

Arf(θ) =
∞∑

n=−∞

r|n|f̂(n)einθ

then
Arf(θ) = (f ∗ Pr)(θ)

where

(∗) Pr(θ) =
∞∑

n=−∞

r|n|einθ =
1− r2

1− 2r cos θ + r2

Lemma 1.26. Pr(θ) is a good kernel in the following sense:

(i) 1
2π

∫
Pr(θ) dθ = 1

(ii) limr→1

∫
δ≤|θ|≤π

Pr(θ) dθ = 0, for all δ > 0.

Proof. (i) easily follows from (∗), since the series converges uniformly for each 0 ≤ r < 1.
To prove (ii), let 1

2
≤ r < 1. Then

1− 2r cos θ + r2 = (1− r)2 + 2r(1− cos θ)
For 0 < δ < |θ| ≤ π, 1− 2r cos θ + r2 > cδ. Hence,

Pr(θ) <
1− r2

cδ
for all δ > 0.
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⇒ 1

2π

∫
δ<|θ|≤π

Pr(θ) dθ ≤
1− r2

cδ
→ 0 as r → 1.

□

Theorem 1.27. Let f ∈ R[−π, π]. Then
(i) Arf(θ) = (Pr ∗ f)(θ) → f(θ), if θ is a point of continuity of f .
(ii) Arf → f uniformly if f is continuous.

Proof. Proof of this result is same as for the Fejer kernel when we consider continuous
parameter r ∈ (0, 1). □

Corollary 1.28. Since C(S1) = L1(S1), it follows that
∥Pr ∗ f − f∥1 → 0 as r → 1 for f ∈ L1(S1)

Theorem 1.29. Let U(r, θ) = f ∗ Pr(θ). Then

(ii) U is twice differentiable on the unit disc D = {reiθ : 0 ≤ r < 1,−π ≤ θ < π}
(iii) If θ is a point of continuity of f , then U(r, θ) → f(θ) as r → 1, and the limit is

uniform if f is continuous on E = [−π, π].
(iii) If f is continuous on E = [−π, π], then U(r, θ) is the unique solution of ∆U = 0

with limr→1 U(r, θ) = f(θ).

Proof. (i)

U(r, θ) =
∞∑

n=−∞

r|n|f̂(n)einθ

Since the series and its derivative (with respect to r and θ), both are uniformly convergent,
term-by-term differentiation is allowed. In fact, U(r, θ) ∈ C∞-function on D. Since

∆U =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂θ2
it is easy to verify ∆U = 0, if U = Pr ∗ f . A proof for (i) is followed by the previous
result.

(iii) Let v(r, θ) be another solution of ∆U = 0 with limr→1 v(r, θ) = f(θ). Then

v(r, θ) =
∞∑

n=−∞

an(r)e
inθ (∵ ∆v = 0)

where

an(r) =
1

2π

∫ π

−π

e−inθv(r, θ) dθ

Since v is two times differentiable,
1

2π

∫ π

−π

∂2

∂v2
v(r, θ)e−inθdθ = −n2an(r).

Hence, from

∆v =
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
= 0,

it follows that

a′′n(r) +
1

r
a′n(r)−

n2

r2
an(r) = 0.
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This gives
an(r) = Anr

n +Bnr
−n, if n ̸= 0.

Since v is bounded on D, letting r → 0 implies Bn = 0. That is,

v(r, θ) =
∑

Anr
neinθ

uniform−−−−→ f(θ)

=⇒ An =
1

2π

∫
f(θ)e−inθ dθ.

For n = 0, A0(r) = A0 = 1
2π

∫ π

−π
f(t)dt. Thus for each 0 ≤ r < 1, Fourier series of v is

same as for u. By uniqueness it follows that u = v.
□

Exercise 1.30. If {Jn}∞n=1 and {Kn}∞n=1 are two families of good kernels for L1(S1), then
{Jn ∗Kn}∞n=1 is a good kernel for L1(S1).

(i)
1

2π

∫ π

−π

Jn ∗ kn(t)dt =
1

2π

∫ π

−π

1

2π

∫ π

−π

Jn(t− s)kn(s)dsdt

=
1

2π

∫ π

−π

1

2π

(
1

2π

∫ π

−π

Jn(t− s)dt

)
kn(s)ds

=
1

2π

∫ π

−π

1 · kn(s)ds ( since L1(S1) is translation invariant)

= 1
(ii)

1

2π

∫ π

−π

|Jn ∗ kn(t)|dt ≤
1

2π

∫ π

−π

M |kn(s)|ds ≤MN <∞

(iii) Let δ > 0, then∫
δ<|t|≤π

|Kn ∗ Jn(t)|dt ≤
∫ π

s=−π

(∫
δ<|t|≤π

|Kn(t− s)|dt
)

|Jn(s)|ds

Let |s| < δ/2, then r = t− s ∈ (−δ/2, δ/2). Now

(∗∗)
∫
|s|<δ/2

(∫
δ/2<|r|<π

|Kn(r)|dr
)
|Jn(s)|ds→ 0 as n→ ∞,

since
∫
δ/2<|s−t|<π

|Kn(t− s)|dt→ 0 as n→ ∞. (Exercise)

Since |s| < δ/2, (use the fact that τxf → f is continuous on L1(S1)). That is, if∫
δ<|t|≤π

|Kn(t)|dt→ 0 for all δ > 0,

then ∣∣∣∣∫
δ<|t|≤π

(τsKn(t)−Kn(t))dt

∣∣∣∣ < ∫
δ<|t|≤π

|(τsKn(t)−Kn(t))| dt ≤ ϵ

For ϵ > 0, there exists n0 ∈ N, such that
∫
|t|>δ

|Kn(t)|dt < ϵ for all n ≥ n0 and for small

|s| < δ1. However,∫
|s|>δ/2

∫
|t|>δ

|Kn(t− s)||Jn(s)|ds dt ≤
∫
|s|>δ/2

M |Jn(s)|ds→ 0 as n→ ∞.
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Lemma 1.31. Let f : [−π, π] → C be such that
|f(x)− f(y)| ≤M |x− y| for all x, y ∈ [−π, π]

for someM > 0. Then Sn(f) → f uniformly. Note that |x−y| = min{|x−y|, |x−y±2π|},
that is, the distance between x and y modulo 2π.

Proof. Calculate

Sn(f)(x)− f(x) =
1

2π

∫ π

−π

(f(x− t)− f(x))Dn(t)dt.

Since

Dn(t) =
sin((n+ 1

2
)t)

sin(t/2)
, t ̸= 0,

|Sn(f)(x)− f(x)| ≤ 1

2π

∣∣∣∣∫ π

−π

(f(x− t)− f(x))
cos t/2

sin t/2
sinnt dt

∣∣∣∣
+

1

2π

∣∣∣∣∫ π

−π

(f(x− t)− f(x)) cosnt dt

∣∣∣∣ .
Let

g(t) =
f(x+ t)− f(x)

t/2
cos

t

2
, t ̸= 0.

Then |g(t)| ≤ 2M | t/2
sin t/2

|, if t ̸= 0.

Since limt→0
t/2

sin(t/2)
= 1, it follows that g is a bounded function on [−π, π] and continuous

on [−π, π] \ {0}. Hence, g ∈ R[−π, π].
Let h(t) = f(x− t)− f(x). Then

|Sn(f)(x)− f(x)| ≤ 1

2π
|
∫ π

−π

g(t) sin(nt)dt|+ 1

2π
|
∫ π

−π

h(t) cos(nt)dt|

=
1

2
|ĝ(n)− ĝ(−n)|+ 1

2
|ĥ(n) + ĥ(−n)| → 0 (by R-L Lemma)

whenever x ∈ [−π, π]. □

Corollary 1.32. If f ∈ R[−π, π] and f is differentiable at x0, then Sn(f)(x0) → f(x0).

Define g(t) =

{
f(x0−t)−f(x0)

t
, t ̸= 0;

−f ′(x0), otherwise

Corollary 1.33. If f ∈ C ′[−π, π], then Sn(f) → f uniformly. (Hint: Use MVT.)

Notice that if f is piecewise C1-function, then Sn(f) → f uniformly too.

Question 1.34. Does every continuous function f on S1 have a Fourier series which
converges to f at each point of S1?

To discuss this, we need the following lemma.

Lemma 1.35. Let f ∈ R[−π, π] and f is bounded on [−π, π] by M . Then there exists a
sequence fn of continuous functions on [−π, π] such that

(i) |fn(x)| ≤M for all n ∈ N, x ∈ [−π, π].
(ii)

∫ π

−π
|fn(x)− f(x)|dx→ 0 as n→ ∞.
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Proof. First consider f as a real-valued function. For ϵ > 0, there exists a partition P of
[−π, π] such that
(1) U(P, f)− L(P, f) < ϵ,
where

P = {−π = x0 < x1 < · · · < xi < xi+1 < · · · < xN = π}
For x ∈ [xi−1, xi], define g(x) = sup{f(y) : xi−1 ≤ y ≤ xi}. Then g is bounded by M .∫ π

−π

|g(x)− f(x)|dx =

∫ π

−π

(g(x)− f(x))dx < ϵ (by (1))

Let δ > 0 and x ∈ (xi − δ, xi + δ), define g̃(x) be the linear function joining g(x− δ) and
g(x+δ), and g̃ = 0 near −π and π. Then g̃ is a continuous periodic function which differs
with g on N many intervals, each of length less than 2δ surrounding the partitioning
points. Hence, ∫ π

−π

|g(x)− g̃(x)| dx ≤ (2M)N(2δ).

For δ sufficiently small, ∫ π

−π

|g(x)− g̃(x)| dx < ϵ.

=⇒
∫ π

−π

|f(x)− g̃(x)| dx < 2ϵ.

For 2ϵ = 1
n
, take g̃ = fn. Thus∫ π

−π

|f(x)− fn(x)|dx→ 0 as n→ ∞.

□

Remark 1.36. If f ∈ R[−π, π] has only finitely many points of discontinuity, then
g̃n(x) → f(x) point-wise.
Now, let X = C(S1) and define Λn : X → X by

Λn(f) = Sn(f)(0).
Then {Λn} is a sequence of linear functionals on X and

|Λn(f)| ≤ ∥Dn∥1∥f∥∞ =⇒ ∥Λn∥ ≤ ∥Dn∥1.
We claim that ∥Λn∥ = ∥Dn∥1 that is ∥Λn∥ =

∫ π

−π
|Dn(t)| dt.

For this, let g(t) = signDn(t). Then for each fixed n, g has only finitely many points
of discontinuity. Hence, there exists gn ∈ C[−π, π] such that |gn(t)| ≤ 1 and gn(t) → g(t)
as n→ ∞ for each t ∈ [−π, π] (by previous lemma). Therefore

lim
m→∞

Λn(gm) = lim
m→∞

∫ π

−π

gm(−t)Dn(t) dt

=

∫ π

−π

g(−t)Dn(t) dt (by DCT)

=

∫ π

−π

|Dn(t)| dt = ∥Dn∥1
Thus,

∥Λn∥ = ∥Dn∥1 → ∞ as n→ ∞.
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That is, {Λn}∞n=1 is not a uniformly bounded sequence in B(X,D), hence by Uniform
Boundedness Principle (UBP), there exists f ∈ C([−π, π]) such that Λn(f) = Sn(f)(0) is
not bounded. Therefore, the F.S. (Fourier Series) of f at 0 does not converge to f(0).

Notice that by translation we can show that for each x ∈ [−π, π], there exists a function
f ∈ C[−π, π] whose Fourier series does not converge to f(x) at x. In fact, for each x ∈
[−π, π], we can create a dense class of continuous functions say Ex such that Sn(f)(x) →
∞ (see Rudin, Real & Complex).

1.5. Convergence of Fourier Series in L2(S1). We have seen that the Fourier series
of f ∈ C(S1) need not converge to f uniformly. Similarly, we can also see that the
Fourier series of f ∈ L1(S1) need not converge to f in L1-norm. ( For this, define
Λn(f) = Sn(f), f ∈ L1(S1) and use ∥Fn∥1 = 1). However, because of the self-duality of
the space L2(S1), for f ∈ L2(S1), we shall see that Sn(f) → f in L2-norm.

For f, g ∈ L2(S1), define an inner product by

⟨f, g⟩ = 1

2π

∫ 2π

0

f(θ)g(θ) dθ

and

∥f∥22 =
1

2π

∫ 2π

0

|f(θ)|2 dθ

Let en(θ) = einθ. Then {en : n ∈ Z} forms an orthonormal system (ONS) in L2(S1),
because

⟨en, em⟩ =

{
0, m ̸= n

1, m = n

Let

⟨f, en⟩ =
1

2π

∫ 2π

0

f(t)e−intdt = an.

Then
SN(f) =

∑
|n|≤N

anen.

Note that
f −

∑
|n|≤N

anen ⊥ en for all |n| ≤ N

Hence, f −
∑
|n|≤N

anen

 ⊥
∑
|n|≤N

bnen

whenever bn ∈ C.
By the Pythagorean theorem,

f = f −
∑
|n|≤N

anen +
∑
|n|≤N

anen,

it follows that
∥f∥22 = ∥f −

∑
|n|≤N

anen∥22 +
∑
|n|≤N

|an|2
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or
(1) ∥f∥22 = ∥f − SN(f)∥22 +

∑
|n|≤N

|an|2

Since f ∈ L2(S1), we get
∑

|n|≤N |an|2 ≤ ∥f∥22 for each N ∈ N (Bessel’s inequality).

1.6. Best Approximation Lemma.

Lemma 1.37. Let f ∈ L2[0, 2π] and an = f̂(n). Then

∥f − SN(f)∥2 ≤ ∥f −
∑
|n|≤N

cnen∥2

for any sequence (cn) ⊂ C. Moreover, equality holds if cn = an for all |n| ≤ N .

Proof.

f −
∑
|n|≤N

cnen = f − SN(f) +
∑
|n|≤N

(an − cn)en

Let an − cn = bn. Then by orthogonality,

(1)

∥∥∥∥∥∥f −
∑
|n|≤N

cnen

∥∥∥∥∥∥
2

2

= ∥f − SN(f)∥22 +

∥∥∥∥∥∥
∑
|n|≤N

bnen

∥∥∥∥∥∥
2

2
So,

∥f − SN(f)∥2 ≤
∥∥∥f −

∑
cnen

∥∥∥
2
.

But equality holds if and only if ∥
∑
bnen∥22 = 0, if and only if bn = 0. That is, Fourier

approximation is best among any other approximation of the form
∑

|n|≤N cnen. □

1.7. Mean Square Convergence.

Theorem 1.38. If f ∈ R[−π, π], then
1

2π

∫ π

−π

|f(x)− SN(f)(x)|2dx→ 0 as N → ∞

(i.e. ∥f − SN(f)∥2 → 0).

Proof. First, we suppose f is continuous. Then for ϵ > 0, there exists a trigonometric
polynomial P such that

|f(x)− P (x)| < ϵ for all x ∈ [−π, π].
Let degP = k. Then ⟨P, en⟩ ̸= 0 for |n| = k, and by the best approximation lemma,

∥f − SN(f)∥22 ≤
1

2π

∫ π

−π

|f(x)− P (x)|2dx ≤ ϵ for all N > k

Now, if f ∈ R[−π, π], then for ϵ > 0, there exists g ∈ C[−π, π] such that
sup |g(x)| ≤ sup |f(x)| ≤M

and ∫
|f(x)− g(x)|dx < ϵ2

Hence,

(2) ∥f − g∥22 =
1

2π

∫ π

−π

|f(x)− g(x)||f(x)− g(x)|dx < 2M

2π
ϵ2
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Since
(3) ∥g − SN(g)∥2 < ϵ for all N > k,
from (2) and (3), we get

∥f − SN(f)∥2 ≤ ∥f − g∥2 + ∥g − SN(g)∥2 + ∥SN(g − f)∥2

≤
√

2M

2π
ϵ+ ϵ+

∑
|n|≤M

|(f − g)∧(n)|2

≤
√
M

ϵ
ϵ+ ϵ+ ∥f − g∥22

≤
√
M

π
ϵ+ 2ϵ for all N > k.

□

Corollary 1.39. If f ∈ L2(S1), then ∥f − SN(f)∥2 → 0.

Since
R[−π, π] = L2[−π, π]

Further,

∥f∥22 = ∥f − SN(f)∥22 +
∑
|n|≤N

|an|2

implies

∥f∥22 = lim
N→∞

∑
|n|≤N

|an|2 =
∞∑

n=−∞

|f̂(n)|2 (Parseval’s Identity).

The set {en : n ∈ Z} is a complete orthonormal system (ONS). For this, let f ∈ L2(S1)
and ⟨f, en⟩ = 0, for all n ∈ N. Then, f = 0 by uniqueness of Fourier series, since
L2(S1) ⊂ L2(S1).

Now, for f, g ∈ L2(S1)

⟨f, g⟩ =

〈
lim

N→∞

∑
|n|≤N

⟨f, en⟩en, g

〉
= lim

N→∞

∑
⟨f, en⟩⟨en, g⟩ =

∑
⟨f, en⟩⟨g, en⟩

that is

⟨f, g⟩ =
∞∑

n=−∞

f̂(n)ĝ(n)

Exercise 1.40. Let
∑∞

n=−∞ |an|2 <∞. Then there exists a unique f ∈ L2(S1) such that

f̂(n) = an.

Proof. Consider ∑
anen(t) =

∑
ane

int

then ∑∣∣aneint∣∣2 =∑ |an|2 · 1 <∞.
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That is,
∑
ane

int is absolutely summable in L2(S1). Set f =
∑
ane

int. Then f ∈ L2(S1)

and ⟨f, en⟩ = an = f̂(n). Since the Fourier series of any L2 function is unique, it follows
that f must be unique. □

Now we end the topic of Fourier series by the following optimal result about the con-
vergence of the Fourier series.

Theorem 1.41. Let f ∈ R[−π, π] and f̂(n) = O(1/n). Then Sn(f)(t) → f(t) if t is a
point of continuity of f ; and the limit is uniform if f is continuous on [−π, π].

Proof. We know that

σn(f ; t) =
n∑

j=−n

(
1− |j|

n+ 1

)
f̂(j)eijt = Sn(f)(t)−

∑
|j|≤n

|j|
n+ 1

f̂(j)eijt

Since σn(f ; t) → f(t) at the point of continuity of f , we need to show that the residual
in the RHS is negligible. For 0 ≤ n < m, define

(1) σm,n(f ; t) =
Sm+1(f)(t) + · · ·+ Sn(f)(t)

n−m
=

(n+ 1)σn+1(f ; t)− (m+ 1)σm+1(f ; t)

n−m
Thus,

σm,n = Sm +
∑

m<|j|≤n

n+ 1− |j|
n−m

f̂(j)ej,

where ej(t) = eijt. For each fixed k ∈ N, from (1),

σkn,(k+1)n(f ; t) =
{(k + 1)n+ 1}σ(k+1)n+1(f ; t)− (kn+ 1)σkn+1(f ; t)

n
→ (k + 1)f(t)− kf(t) = f(t) as n→ ∞.

Further, if nk ≤ m < (k + 1)n, then

|σkn,(k+1)n(f ; t)− Sm(f ; t)| ≤
∑

kn<|j|≤(k+1)n

|f̂(j)| ≤ 2

(k+1)n∑
j=nk+1

A

j
≤ 2nA

kn
=

2A

k
.

Now, for fixed k0, choose n0 ≥ k0 such that for all n ≥ n0

|σk0n,(k0+1)n(f ; t)− f(t)| < ϵ/2 (3)
For ϵ > 0, select k0 so large that 2A/k0 < ϵ/2. Then for m > k0n0, and for some n ≥ n0,
k0n0 ≤ k0n ≤ m < (k0 + 1)n,

(4) |σk0n,(k0+1)n(f ; t)− Sm(f)(t)| <
2A

k0
<
ϵ

2
From (3) and (4), for m ≥ k0n0 = N0 (say), we get |Sm(f)(t)− f(t)| < ϵ.

□

1.8. Isoperimetric problem.

Theorem 1.42. Let γ be a simple closed curve in R2 of length l, and it encloses the area
A. Then A ≤ l2

4π
. Equality holds if and only if γ is a circle.

Proof. By using dilation, we can assume that l = 2π. Then A ≤ π. Let γ : [0, 2π]
C1

−→ R2

be given by γ(t) = (x(t), y(t)), such that
(x′(t))2 + (y′(t))2 = 1.
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(i.e. γ was traced by a particle with constant speed). Then

(1)
1

2π

∫ 2π

0

(
(x′(t))2 + (y′(t))2

)
dt = 1

Since γ is closed, x(t) and y(t) are 2π-periodic. Hence,

x(t) ∼
∑

ane
int, y(t) ∼

∑
bne

int.

As γ is given smooth, γ can be considered to be a continuously differentiable curve, i.e.
γ ∈ C1([0, 2π]), and

x′(t) ∼
∑

(in)ane
int, y′(t) ∼

∑
(in)bne

int

By the Parseval identity, (1) gives

(2)
∞∑

n=−∞

n2(|an|2 + |bn|2) = 1

Since x(t) and y(t) are real-valued, we have an = a−n and bn = b−n. Now, by bilinear
form of the Parseval identity,

(3) A =
1

2

∣∣∣∣∫ 2π

0

(x(t)y′(t)− x′(t)y(t))dt

∣∣∣∣ = π

∣∣∣∣∣
∞∑

n=−∞

n(anbn − bnan)

∣∣∣∣∣
Here,

|anbn − bnan| ≤ 2|an||bn| ≤ |an|2 + |bn|2
Since |n| ≤ n2, from (3) we get:

A ≤ π
∑

|n|2(|an|2 + |bn|2) = π (by (2))

When A = π, it follows that
x(t) = a−1e

−it + a0 + a1e
it and y(t) = b−1e

−it + b0 + b1e
it (from (3))

From (2),
2(|a1|2 + |b1|2) = 1, ( since a−1 = a1, b−1 = b1)

that is

a1 =
1

2
eiα , b1 =

1

2
eiβ

The fact that 1 = 2|a1b1 − b1a1|, we get
| sin(α− β)| = 1 =⇒ α = β = kπ/2

⇒ x(t) = a0 ± cos(α + t), y(t) = b0 ± sin(α + t).
□
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1.9. Exercise.

1. Determine whether each of the following statements is TRUE or FALSE, providing
rigorous justification in each case.
(a) Let Dn denote the Dirichlet kernel on S1. Does the identity Dn ∗Dn = Dn neces-

sarily hold?

(b) Does there exist a function f ∈ L1(S1) such that
∞∑

n=−∞
|nf̂(n)|2 = ∞?

2. Suppose f is continuously differentiable on S1. Show that

f̂ ′(n) = inf̂(n) for all n ∈ Z.
Deduce that there exists a constant C > 0 such that

|f̂(n)| ≤ C

|n|
.

Does this conclusion remain valid if f is absolutely continuous?
3. Let f be of bounded variation on [−π, π]. Prove that

|f̂(n)| ≤ Var(f)

2π|n|
for all n ∈ Z.

4. For f ∈ L1(S1), establish that

f̂(n) =
1

4π

∫ π

−π

[
f(x)− f

(
x+

π

n

)]
e−inx dx.

Use this identity to prove the Riemann–Lebesgue lemma.
5. Let f ∈ L1(S1) satisfy the Hölder condition

|f(x+ h)− f(x)| ≤M |h|α
for all x, h ∈ S1, where 0 < α < 1 and M > 0. Show that

f̂(n) = O

(
1

|n|α

)
.

6. Demonstrate that Fejér’s kernel Fn can be expressed as

Fn(t) =
n∑

j=−n

(
1− |j|

n

)
eijt.

7. Given f ∈ L1(S1) and m ∈ N, define fm(t) = f(mt). Prove that

f̂m(n) =

{
f̂
(
n
m

)
, if m | n,

0, otherwise.

8. For f : S1 → C, and for x, y ∈ S1, define the translation operator τxf(y) = f(x − y).
Prove that the map x 7→ τxf is continuous in Lp(S1) for 1 ≤ p <∞. That is,

∥τxf − f∥p → 0 as |x| → 0.
Does this continuity hold for p = ∞?

9. Let f ∈ L1(S1) and g ∈ L∞(S1). Show that

lim
n→∞

1

2π

∫ π

−π

f(t)g(nt) dt = f̂(0)ĝ(0).
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10. Given f ∈ L1(S1), define the convolution operator Tf : L1(S1) → L1(S1) by Tf (g) =
f ∗ g. Prove that Tf is a bounded operator and that its operator norm satisfies

∥Tf∥ = ∥f∥1.
11. Let P be a trigonometric polynomial of degree n on S1. Show that

∥P ′∥∞ ≤ 2n∥P∥∞.
12. For 1 ≤ p ≤ ∞ with p−1 + q−1 = 1, and f ∈ Lp(S1), g ∈ Lq(S1), prove that the

convolution f ∗ g is continuous on S1.
13. Suppose f ∈ L∞(S1) satisfies

|f̂(n)| ≤ k

|n|
for some constant k > 0 and all n ∈ Z \ {0}. Prove that

|Sn(f)(t)| ≤ ∥f∥∞ + 2k,
where Sn(f) = Dn ∗ f.

14. If f is a bounded monotone function on S1, show that

f̂(n) = O

(
1

|n|

)
.

15. Let f be Riemann integrable on [−π, π]. Prove that
∞∑

n=−∞

|f̂(n)|2 <∞,

from which it follows that f̂(n) = o(1).
16. Prove that if the series

∑∞
n=0 an of complex numbers converges to s, then it is both

Cesàro and Abel summable to s.
17. Prove that if the series

∑∞
n=0 an is Cesàro summable to σ, then it is Abel summable to

σ. Show by counterexample that the converse need not hold.
18. Suppose the series

∑∞
n=0 an is Cesàro summable to l. Show that

lim
n→∞

an
n

= 0,

where sn = a1 + · · ·+ an.
19. Define u(r, θ) = ∂Pr

∂θ
(θ), where Pr(θ) is the Poisson kernel on the open unit disk D =

{reiθ : 0 ≤ r < 1, θ ∈ [−π, π)}. Prove that
∆u = 0 on D

and
lim
r→1

u(r, θ) = 0

for every θ ∈ [−π, π).
20. Let f be Riemann integrable on [−π, π] and define the Abel mean

Ar(f)(θ) = f ∗ Pr(θ), 0 ≤ r < 1.
If f has a jump discontinuity at θ, prove that

lim
r→1

Ar(f)(θ) =
f(θ+) + f(θ−)

2
.

Provide justification for why

lim
r→1

Ar(f)(θ) ̸=
f(θ)

2
when f is continuous at θ.
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21. Let f be Riemann integrable on [−π, π] and σn(f)(θ) = f ∗ Fn(θ), where Fn is Fejér’s
kernel. If f has a jump discontinuity at θ, prove that

lim
n→∞

σn(f)(θ) =
f(θ+) + f(θ−)

2
.

22. Suppose f is Riemann integrable on [−π, π] such that

f̂(n) = O

(
1

|n|

)
for all n ∈ Z.

Prove the following assertions:
(a) If f is continuous at θ, then

SN(f)(θ) = DN ∗ f(θ) → f(θ) as N → ∞.
(b) If f has a jump discontinuity at θ, then

SN(f)(θ) →
f(θ+) + f(θ−)

2
as N → ∞.

(c) If f is continuous on [−π, π], then the convergence
SN(f) → f

is uniform.
23. Assume f is a Lebesgue measurable function on S1 satisfying∫ 2π

0

|f(t)|
t

dt <∞.

Show that
lim
n→∞

Sn(f ; 0) = 0.

24. For f ∈ L2(S1), prove that

1

n

n−1∑
k=0

f

(
x+

k

n

)
→ f̂(0)

in the L2-metric as n→ ∞.
25. Does there exist a function f ∈ L1(S1) such that

∞∑
n=−∞

|f̂(n)|2 = ∞?

26. Suppose f ∈ L1(S1) vanishes on a neighborhood of x = 0. Prove that
SN(f) → 0

uniformly near x = 0.
27. Let f be a function on [−π, π] satisfying the Lipschitz condition

|f(θ)− f(φ)| ≤M |θ − φ|,
for some M > 0 and all θ, φ ∈ [−π, π].
(a) For

u(r, θ) = Pr ∗ f(θ),
show that ∂u

∂θ
exists for all 0 ≤ r < 1 and that∣∣∣∣∂u∂θ

∣∣∣∣ ≤M.
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(b) Demonstrate that
∞∑

n=−∞

|f̂(n)| ≤ |f̂(0)|+ 2M

√√√√ ∞∑
n=1

1

n2
.

28. If f is continuously differentiable on S1, show that
∞∑

n=−∞

(1 + |n|2)|f̂(n)|2 <∞.

29. Let {Gn}∞n=1 be a family of good kernels on S1. Prove that

lim
n→∞

Ĝn(k) = 1.

30. Let f and g be Riemann integrable on [−π, π]. Define g̃(x) = g(−x).
(a) Show that

1

2π

∫ π

−π

|g(t)|2 dt = (g ∗ g̃)(0).

(b) Show that
1

2π

∫ π

−π

|(f ∗ g)(x)|2 dx =
1

2π

∫ π

−π

|(f ∗ g̃)(x)|2 dx.

31. Let f ∈ L1(S1) satisfy f̂(|n|) = −f̂(−|n|) ≥ 0 for all n ∈ Z. Show that∑
n>0

f̂(n)

n
<∞.

32. If {Kn}∞n=1 and {Jn}∞n=1 are families of good kernels on S1, show that {Kn ∗ Jn}∞n=1 is
also a family of good kernels.

33. Suppose f is absolutely continuous on S1 with f ′ ∈ L2(S1). Prove that
∞∑

n=−∞

|f̂(n)| ≤ ∥f∥1 + 2

√√√√ ∞∑
n=1

1

n2
∥f ′∥2.

34. Show that there exists a function f ∈ L1(S1) for which the partial sums Sn(f) of its
Fourier series fail to converge to f in the L1-norm.

35. Let f ∈ L1(S1) and Sn(f) denote the n-th partial sum of the Fourier series of f. Show
that ∥∥∥∥Sn(f)

n

∥∥∥∥
1

→ 0 as n→ ∞.

36. If f is Riemann integrable on [−π, π] and differentiable at t0 ∈ [−π, π], prove that
Sn(f ; t0) → f(t0) as n→ ∞.

37. Suppose f ∈ C1(S1) satisfies
(f ∗ (1 + f))(t) = f ′(t)

for all t ∈ S1. Prove that f is a trigonometric polynomial.
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2. Fourier Transform

Fourier analysis may be viewed as the systematic study of functions through the ex-
ploitation of their underlying symmetries. In the case of Fourier series, we observed that
when a function is periodic on R, it suffices to restrict attention to a single fundamental
period. Each period contributes precisely one Fourier coefficient, so that the entire func-
tion is encoded by a countable collection of complex numbers. By contrast, when f is not
periodic, a different framework is required, though the central idea remains the same: to
understand how a function on Rn (or on Tn) transforms under the action of translations.

Suppose the function f transforms under the translation by a multiplication of absolute
value 1. That is,

f(x+ y) = φ(x)f(y), where |φ(x)| = 1.
Then

f(x) = φ(x)f(0).
That is, f is completely determined by φ. Moreover,

φ(x)φ(y)f(0) = φ(x)f(y) = f(x+ y) = φ(x+ y)f(0)
=⇒ φ(x+ y) = φ(x)φ(y), f ̸≡ 0.

Hence, to determine all such f that transform as above, it is enough to find out those φ
such that

φ(x+ y) = φ(x)φ(y).

Theorem 2.1. If φ is a measurable function on R with φ(x+y) = φ(x)φ(y) and |φ(x)| =
1, then there exists ξ ∈ Rn such that φ(x) = e2πix·ξ.

Proof. First, we consider φ on R. Let a ∈ R be such that

A−1 =

∫ a

0

φ(t)dt ̸= 0.

(such an a exists, otherwise by fundamental theorem of calculus, φ = 0 a.e.) Then

φ(x) = A

∫ a

0

φ(x)φ(t)dt = A

∫ a

0

φ(x+ t)dt = A

∫ x+a

x

φ(t)dt

This implies φ is continuous, being the integral of φ ∈ L1

loc(R). Further, φ is integral of

the continuous function φ, hence φ ∈ C1(R). This gives,
φ′(x) = A[φ(x+ a)− φ(x)] = Bφ(x)

where B = A[φ(a)− 1].

=⇒ d

dx

[
e−Bxφ(ax)

]
= 0 =⇒ e−Bxφ(x) = const

Since φ(0) = 1, φ(x) = eBx. Since |φ(x)| = 1, it follows that B must be purely imaginary,
that is, B = 2πi ξ for some ξ ∈ R. □
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For φ : Rn → C, define φj(t) = φ(tej), where {ej : 1 ≤ j ≤ n} is the standard basis.
Then

φj(t+ s) = φj(t)φj(s)

=⇒ φj(x) = e2πiξjx, x ∈ R

=⇒ φ(y) = φ

(∑
j

yjej

)
=

n∏
j=1

φ(yj) = e2πiy·ξ

where ξ = (ξ1, . . . , ξn).

Corollary 2.2. If φ : T → C measurable and φ(x+ y) = φ(x)φ(y) with |φ(x)| = 1, then
φ(x) = e2πinx for some n ∈ Z.

Proof. Notice that φ is periodic with period 1 if and only if φ(0) = φ(1), if and only if
e2πiξ = 1 if and only if ξ ∈ Z. That is, φ(x) = e2πinx, n ∈ Z.

□

Exercise 2.3. If φ : Tn → C measurable and |φ(x)| = 1,
φ(s+ t) = φ(s)φ(t),

then show that
φ(t) = e2πit.α, α ∈ Zn

Thus, we conclude that those functions which transform as above, satisfying
f(x+ y) = e2πix·ξf(·y), for some ξ ∈ Rn (or Zn).

For the time being, we consider functions of the form f(x+ y) = eix·ξf(y).

2.1. Fourier Transform.

Definition 2.4. Let f ∈ L1(R) ( or L1(Rn)), then we define its Fourier transform by

f̂(ξ) =

∫
R
e−ixξf(x) dx.

Lemma 2.5. Let f ∈ L1(Rn). Then

(i) (τyf)
∧(ξ) = e−iξ·yf̂(ξ), where τyf(x) = f(x− y).

(ii) If g(x) = eiα·xf(x), then ĝ(ξ) = f̂(ξ − α) = (ταf̂)(ξ).

(iii) If g(x) = f(−x), then ĝ(ξ) = f̂(ξ).

(iv) If g(x) = f(x
λ
), λ > 0 then ĝ(ξ) = λf̂(λξ)

(v) |f̂(ξ)| ≤ ∥f∥1 (uniformly bounded).

(vi) If f, g ∈ L1(Rn), then (f ∗ g)∧(ξ) = f̂(ξ)ĝ(ξ).
(Hint: use Fubini’s theorem and change of variable.)

Lemma 2.6. Let f ∈ L1(Rn), then f̂ is uniformly continuous on Rn.

Proof. Let xn, yn ∈ Rn, be such that |xn − yn| → 0. Then

|f̂(xn)− f̂(yn)| =
∣∣∣∣∫ f(ξ)(e−ixn·ξ − e−iyn·ξ)dξ

∣∣∣∣ ≤ ∫ |f(ξ)||e−i(xn−yn)·ξ − 1|dξ
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For each fixed ξ, e−ix·ξ is uniformly continuous. It follows by Dominated Convergence
Theorem (DCT) that

|f̂(xn)− f̂(yn)| → 0 as n→ ∞.

Hence f̂ is uniformly continuous on Rn.
□

Lemma 2.7. Let f ∈ L1(R) and f is uniformly continuous. Then
lim

|x|→∞
f(x) = 0.

Proof. Suppose lim|x|→∞ f(x) ̸= 0, then for some ϵ0 > 0, there exists x0 ∈ R such that
|f(x0)| > ϵ0, |x0| > δ for all δ > 0. By continuity at x0, there exists δ0 > 0 such
that if |x − x0| < δ0 implies |f(x) − f(x0)| < ϵ0

2
implies |f(x)| > ϵ0/2. By uniform

continuity, |f(x)| > ϵ0/2 on each interval of length 2δ0. Since y ∈ (x0 − 2δ0, x0 − δ0),
|f(y)| > ϵ0/2 =⇒ |x0 − y| < δ0 =⇒ |f(y)| > ϵ0

2
. Hence∫

|y|>δ

|f(y)|dy =
∑∫ x0+(n+1)δ0

x0−nδ0

|f(y)|dy ≥
∑
n∈Z

δ · ϵ0/2 = ∞

□

We use this fact to prove the following result.

Theorem 2.8. Let f ∈ L1(R) and xf(x) ∈ L1(R), then f̂ is differentiable and
∂

∂ξ
f̂(ξ) = −(̂ixf)(ξ)

Proof.
f̂(ξ + h)− f̂(ξ)

h
=

∫
f(x)e−ixξ (e

−ixh − 1)

h
dx

Notice that ∣∣∣∣e−ixh − 1

h

∣∣∣∣ ≤ |x|, e−ixh − 1

h
→ −ix as h→ 0.

Hence, the integrand on the RHS is bounded by |xf(x)| ∈ L1(R). By DCT, it follows
that

∂

∂ξ
f̂(ξ) =

∫
f(x)e−ixξ(−ix)dx = ̂(−ixf)(ξ).

□

Theorem 2.9. Let f ∈ L1(R), and F (x) =
∫ x

−∞ f(y)dy. If F ∈ L1(R) then F̂ (ξ) =
1
iξ
f̂(ξ), ξ ̸= 0.

Equivalently, if f, f ′ ∈ L1(R) then f̂ ′(ξ) = iξf̂(ξ) f ′ is the derivative of f .

Proof. By Fundamental theorem of calculus (FTC), it follows that F ′ = f a.e. on R.
Since F ∈ L1(R), we have∫ ∞

−∞
F (x)e−ix·ydx =

F (x)e−ixy

−iy

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)e−ixy dx

−iy
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Since F (x)e−ixy ∈ L1(R) and uniformly continuous, by the previous Lemma 2.7,

F̂ (y) =
1

iy
f̂(y), y ̸= 0

or
f̂ ′(y) = iyf ′(y), if f, f ′ ∈ L1(R).

□

Lemma 2.10. Let C∞
c (R) be the space of all infinitely differentiable functions on R having

compact support. Then
C∞

c (R) = L1(R).

Proof. Let f ∈ L1(R). Since Cc(R) = L1(R), for ϵ > 0, there exists g ∈ Cc(R) such
that ∥g − f∥1 < ϵ. Now, consider φ ∈ C∞

c (R) such that
∫
R φ = 1. For t > 0, let

φt(x) = t−1φ(x/t). Then
∫
φt = 1. Hence, g ∗ φt ∈ C∞

c (R) (exercise). Now

g ∗ φt(x)− g(x) =

∫
(g(x− y)− g(x))φt(y)dy =

∫
(g(x− tz)− g(x))φ(z)dz(2.1)

⇒ ∥g ∗ φt − g∥1 ≤
∫

∥τtzg − g∥|φ(z)|dz
For small t, ∥τtzg − g∥ < ϵ. By DCT it follows that ∥g ∗ φt − g∥1 < ϵ for all |t| < δ. So
∥g ∗ φt − f∥1 < 2ϵ for all |t| < δ.

□

Exercise 2.11. For 1 ≤ p <∞, show that
C∞

c (R) = Lp(R), C∞
c (R) = C0(R).

(Hint: use Minkowski integral inequality in (2.1).)

2.2. Riemann-Lebesgue Lemma.

Theorem 2.12. If f ∈ L1(R), then lim|ξ|→∞ f̂(ξ) = 0.

Proof. Since f ∈ L1(R), for ϵ > 0, there exists g ∈ C∞
c (R) such that ∥g − f∥1 < ϵ. Given

g is differentiable, ĝ′(x) = (ix)ĝ(x), by Theorem 2.9. So |xĝ(x)| ≤ ∥g′∥1 < ∞. Hence
|ĝ(ξ)| → 0 as |ξ| → ∞.
Now

|f̂(ξ)− ĝ(ξ)| ≤ ∥f − g∥1 < ϵ.

Letting |x| → ∞, then |f̂(x)| ≤ ϵ, for all ϵ > 0. Which implies

lim
|x|→∞

f̂(x) = 0.

□

Notice that (L1(R))∧ ⊊ C0(R). In fact, the inclusion is injective but not surjective.
That is, every continuous function vanishing at ∞ need not be the Fourier transform (FT)
of an L1 function. This is based on the fact that F.T. of an L1 function can’t too far from
being an L1 function.

Suppose g ∈ C0(R) is an odd function such that g = f̂ , for some f ∈ L1(R). Then∣∣∣∫ b

1
f̂(x)
x
dx
∣∣∣ ≤ A < ∞, where A is independent of b. This follows by the fact that



32 FOURIER ANALYSIS∫ β

α
| sin t

t
|dt ≤ B <∞, where B is free of choice of α, β ∈ R. Since f̂ is odd (as g is odd):

f̂(x) = −i
∫
R
f(t) sin tx dt

Consider ∣∣∣∣∫ n

−n

f(t)

(∫ b

1

sin tx

x
dx

)
dt

∣∣∣∣ =

∣∣∣∣∫ n

−n

f(t)

(∫ b

1

sin tx

x
dx

)
dt

∣∣∣∣
≤
∫ n

−n

|f(t)|B ≤ ∥f∥1B <∞.

Notice that, by Fubini’s theorem we can interchange the integrals in above. Hence∣∣∣∣∣
∫ b

1

f̂(x)

x
dx

∣∣∣∣∣ ≤ ∥f∥1B <∞

But for

g(x) =


1

log x
x > 0

1
log |x| x < 0

0 x = 0

Then g ∈ C(R) and g is odd. However,∣∣∣∣∫ b

1

1

x log x
dx

∣∣∣∣ = ∞.

Example 2.13. Let f(x) = e−πx2
, the Gaussian. Then

F (ξ) = f̂(ξ) =

∫
e−2πixξf(x)dx = f(ξ)

We know that ∫
e−πx2

dx = 1 (Exercise)

Now

F ′(ξ) =

∫
(−2πiξ) f(x)e−2πixξdξ

= (−2πixf)∧(ξ) ( since f, xf ∈ L1(R))

= i(f ′)∧(ξ)( since f ′(x) = −2πxe−πx2

)

= i(2πiξ)f̂(ξ)

= −2πξF (ξ)
That is

F ′(ξ) = −2πξF (ξ)

=⇒ d

dξ

(
F (ξ)eπξ

2
)
= 0

=⇒ F (ξ)eπξ
2

= const.

Since F (0) = 1, hence F (ξ) = e−πξ2 .

Remark 2.14. For δ > 0, let fδ(x) = δ1/2e−πx2/δ. Then f̂δ(x) = e−πδx2 → 0 as δ → 0,

however, fδ(x) → 1 as δ → 0. Hence, we cannot see both fδ & f̂δ exist together. That
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is, fδ and f̂δ cannot be localized together. (This is known as the Heisenberg uncertainty
principle; we elaborate later.)

Example 2.15. If f(x) = e−πx2
then show that |f(x)| ≤ M

1+x2

Lemma 2.16. Let f, h ∈ L1(R) and

f(x) =

∫
R
H(ξ)eixξdξ

for some H ∈ L1(R), then

(h ∗ f)(x) =
∫
H(ξ)f̂(ξ)eixξdξ

Proof.

h ∗ f(x) =
∫
h(x− y)f(y)dy

=

∫ ∫
H(ξ)e−i(x−y)ξf(y)dydξ

=

∫
H(ξ)

(∫
e−iyξf(y)dy

)
eixξdξ

=

∫
H(ξ)f̂(ξ)eixξdξ

□

2.3. Good Kernels on R. Next, we shall consider seq. of good kernel on R. Some more
of it is known as summability kernel (or approximation of identity).

Definition 2.17. A seq. of functions {Kλ} ⊂ L1(R) is said to be “good kernels” if

(i)
∫
Kλ(x)dx = 1

(ii)
∫
|Kλ(x)|dx ≤M as λ→ ∞.

(iii)
∫
|x|>δ

|Kλ(x)|dx→ 0 as λ→ ∞, for all δ > 0.

We can easily construct a sequence of good kernels in the following way. Let f ∈ L1(R)
be such that

∫
R f(x)dx = 1. Write Kλ(x) = λf(λx), λ > 0. Then

(i)
∫
Kλ(x)dx =

∫
f(y)dy = 1 (put y = λx)

(ii) ∥Kλ∥1 = ∥f∥1 <∞ for all λ > 0
(iii)

∫
|x|>δ

|Kλ(x)|dx =
∫
|y|>λδ

|f(y)|dy =
∫
R(f − χ{|y|≤δλ}f)dy,

Since f(x) − χ{|y|≤δλ}(x) → 0 as λ → ∞ and |f − χ{|y|≤δλ}f | ≤ 2|f | ∈ L1 by DCT∫
|λ|>δ

|Kλ(x)| → 0 as λ→ ∞. Hence, {Kλ}λ>0 is a family of good kernels.

Theorem 2.18. Let f ∈ L1(R) (or f ∈ Lp(R), 1 ≤ p <∞). Then
lim
λ→∞

∥f −Kλ ∗ f∥p = 0.

If f ∈ L∞(R) and f is continuous at x, then
lim
λ→∞

(f ∗Kλ)(x) = f(x).
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Proof.

|Kλ ∗ f(x)− f(x)| ≤
∫
R
|Kλ(y)(f(x− y)− f(x))|dy (1)

By Minkowski’s integral inequality (exercise), (if p > 1)

∥Kλ ∗ f − f∥p ≤
∫
R
|Kλ(y)|∥τyf − f∥p dy

For small |y| < δ,
∥τyf − f∥p < ϵ

Hence,

∥Kλ ∗ f − f∥p ≤
∫
|y|<δ

|Kλ(y)|ϵdy +
∫
|y|≥δ

|Kλ(y)|∥τyf − f∥p dy

≤ ϵM +

∫
|y|>δ

|Kλ(y)|2∥f∥pdy

≤ ϵM + 2∥f∥pϵ, for δ > 0
If f ∈ L∞(R), continuous at x, then from (1)

|Kλ ∗ f(x)− f(x)| ≤
∫
R
|Kλ(y)||f(x− y)− f(x)|dy

For small |y| < δ, |f(x− y)− f(x)| < ϵ. Hence,
|Kλ ∗ f(x)− f(x)| < ϵM + 2∥f∥∞ϵ, for δ > 0.

Therefore,
Kλ ∗ f(x) → f(x) as λ→ ∞.

□

2.4. The Fejer Kernel on R. The Fejer Kernel on R is given by
Kλ(x) = λK(λx), where

K(x) =
1

2π

(
sin(x/2)

x/2

)2

=

∫ 1

−1

(1− |ξ|)eixξdξ.

(It can be seen by evaluating the integral)

Kλ(x) =
1

2π

∫ λ

−λ

(
1− |ξ|

λ

)
eixξdξ

=
1

2π

∫
R

(
1− |ξ|

λ

)
χ[−λ,λ](ξ)e

ixξdξ

=
1

2π

∫
R
Gλ(ξ)e

ixξdξ

where

Gλ(ξ) =

(
1− |ξ|

λ

)
χ[−λ,λ](ξ)

is compactly supported.
To show Kλ is a good kernel, we need to show that∫

R
K(x)dx = 1
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For this, we use the fact that the Fejer kernel for the circle is

Fn(x) =
1

n+ 1

(
sin((n+ 1)x/2)

sin(x/2)

)2

and

lim
x→∞

1

2π

∫ δ

−δ

Fn(x)dx = 1

We know that

lim
x→0

(
sin(x/2)

x/2

)2

= 1

For ε = 1− sin(δ)
δ

, for some small ε > 0, there exists δ > 0,∣∣∣∣∣
(
sin(x/2)

x/2

)2

− 1

∣∣∣∣∣ <
∣∣∣∣∣1−

(
sin δ

δ

)2
∣∣∣∣∣

That is, (
sin(δ)

δ

)2

<

(
sin(x/2)

x/2

)2

for |x| < δ (small). Hence,

1

2π(n+ 1)

(
sin δ

δ

)2(
sin((n+ 1)x/2)

x/2

)2

≤ 1

2π(n+ 1)

(
sin(x/2)

x/2

sin(n+ 1)x/2

sin x/2

)2

≤ 1

2π(n+ 1)

(
sin(n+ 1)x/2

x/2

)2

.

Let Kn(x) =
1

2π(n+1)

(
sin(n+1)x/2

x/2

)2
. Then

1

2π

(
sin δ

δ

)2 ∫ δ

−δ

Fn(x) dx ≤
∫ δ

−δ

Kn(x) dx ≤ 1

2π

∫ δ

−δ

Fn(x) dx.

Since,

lim
n→∞

∫ δ

−δ

Kn(x) dx =

∫ ∞

−∞
K(x) dx,

it follows that (
sin δ

δ

)2

.1 ≤ ∥K∥1 ≤ 1, ∀ δ > 0 (small)

=⇒ ∥K∥1 = 1.
Hence, {Kλ}λ>0 is a family of good kernels.

2.5. Fourier uniqueness theorem. Let f ∈ L1(R). Then, by the fact that

f ∗Kλ(x) =
1

2π

∫
R

(
1− |ξ|

λ

)
χ[−λ,λ](ξ)f̂(ξ)e

ixξdξ

it follows that

f = lim
λ→∞

1

2π

∫
R

(
1− |ξ|

λ

)
χ[−λ,λ](ξ)f̂(ξ)e

ixξdξ (∗)

in the L1-norm. Thus, if f̂(ξ) = 0 for all ξ ∈ R, then by (∗)
∥f∥1 = 0 =⇒ f = 0 a.e.
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2.6. Fourier Inversion.

Theorem 2.19. Let f, f̂ ∈ L1(R). Then

f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ

holds for almost all x ∈ R.

Proof. We know that

f(x) = lim
λ→∞

∫
R

(
1− |ξ|

λ

)
f̂(ξ)eixξdξ(2.2)

holds in L1-norm. Hence, it follows that there is a subsequence such that (2.2) holds.
Therefore, w.l.o.g., we can assume (2.2) holds a.e. Since

|χ[−λ,λ]

(
1− |ξ|

λ

)
f̂(ξ)| ≤ 2|f̂(ξ)| ∈ L1(R)

and χ[−λ,λ](ξ)(1 − |ξ|
λ
)f̂(ξ) → f̂(ξ) as λ → ∞. By Dominated Convergence Theorem, we

get

f(x) = lim
λ→∞

1

2π

∫
R
f̂(ξ)eixξdξ a.e.

That is, if f, f̂ ∈ L1(R), then
f = (f̂)∨ a.e.

□

Notice that Fejer Kernel Kλ ∈ L1(R) (as
∫
Kλ(x)dx =

∫
K(x)dx = 1) and

Kλ(x) =

∫
R
Gλ(ξ)e

ixξdξ = G∨
λ(x)(1)

where Gλ(ξ) = χ[−λ,λ](ξ)
(
1− |ξ|

λ

)
∈ L1(R). In fact, Kλ ∈ L1(R). Therefore, by

inversion formula,
(from (1)) Gλ = (G∨

λ)
∧ = K̂λ(x)

That is,

K̂λ(x) = χ[−λ,λ](x)

(
1− |x|

λ

)
.

2.7. Plancherel Theorem. We know that if f ∈ L1(R), then f̂ = F(f) is a uniformly

continuous function on R. However, for f ∈ L2(R), f̂ exists uniquely as a function in
L2(R) and satisfies the isometry

∥f̂∥2 = ∥f∥2
This can be seen using the fact that F is a continuous linear function on dense set

L1 ∩ L2 to L2.
Further, using Riesz-Thorin interpolation theorem, for f ∈ Lp(R), 1 ≤ p ≤ 2, f̂ exists

as function in Lq(R), where 1
p
+ 1

q
= 1 (This we see later). Finally, for p > 2, we shall see

that f̂ exists as a distribution. That is, f̂ defined by the relation

⟨f̂ , φ⟩ =
∫
f(x)φ(x)dx, φ ∈ C∞

c (R).
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Theorem 2.20. There exists a unique operator F from L2(R) onto L2(R̂) having the
following properties:

Ff = f̂ for f ∈ L1 ∩ L2(R),
∥Ff∥2 = ∥f∥2

Proof. For f ∈ L1 ∩ L2(R), we define

f̂(ξ) =

∫
e−2πixξf(x)dx

Then

f ∗Kλ(x) =

∫
R
Gλ(ξ)f̂(ξ)e

2πixξdξ

where Gλ(ξ) =
(
1− |ξ|

λ

)
χ[−λ,λ](ξ).

Let f̃(x) = f(−x), and g = f ∗ f̃ . Then g ∈ L1(R) and
g̃(x) = f̂(x)f̂(x) = |f̂(x)|2.

Further,

g(x) =

∫
f(x− y)f(−y)dy =

∫
f(x+ y)f(y)dy = ⟨f−x, f⟩

As x 7→ f−x is continuous from R → L2(R) and < . > is continuous, it follows that g
continuous and |g(x)| ≤ ∥fx∥2∥f∥2 that is |g(x)| ≤ ∥f∥22.

Notice that g ∈ L∞ and g is continuous.

g ∗Kλ(0) =

∫
Gλ(ξ)ĝ(ξ)dξ → g(0) as λ→ ∞.

That is,

lim
λ→∞

∫
Gλ(ξ)ĝ(ξ)dξ = ∥f̂∥22 = g(0)

Then,

lim
λ→∞

∫
Gλ(ξ)|f̂(ξ)|2dξ = ∥f̂∥22

Since Gλ(ξ) ↑ 1, by monotone convergence theorem, it follows that∫
|f̂(ξ)|2dξ = ∥f∥22

that is ||f̂ ||2 = ||f ||2 for f ∈ L1 ∩ L2.

Let Y = {f̂ | f ∈ L1 ∩ L2}, then
F : L1 ∩ L2(R) onto−−→ Y

isometry. We claim that Y = L2(R). By Hahn-Banach theorem, it is enough to show
that Y ⊥ = {0}. If y ∈ Y ⊥ ⊂ L2, then the fact that Gλex where ex(ξ) = e2πixξ belongs to
L1 ∩ L2,

(Gλex)
∧ = (Gλe−x)

∨ = τxG
∨
λ = τxKλ ∈ Y

for each x ∈ R. This holds, by applying Fourier inversion to Gλ = K̂λ(x) as Gλ ∈ L1(R).
Hence, we get

⟨τxKλ, h⟩ = 0 =⇒ Kλ ∗ h(x) = 0
But ||Kλ ∗ h− h||2 → 0 as λ→ ∞

=⇒ ||h||2 = 0 =⇒ Y ⊥ = {0}
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Hence, F can be extended on L2 onto L2 with ||Ff ||2 = ||f ||2. For this, F : L1 ∩ L2 ⊂
L2 → Y ⊂ L2. Let g ∈ L2(R), then there exists F (gn) ∈ Y with gn ∈ L1 ∩ L2 such that

Fgn
L2

−→ g and
||F (gn)∥2 = ||gn||2

It implies that gn is Cauchy sequence in L1 ∩ L2(R). Hence, there exists f ∈ L2 such

that gn
L2

−→ f and it implies that Fgn
L2

−→ Ff . Then
∥F (f)∥2 = ∥g∥2.

□

Remark 2.21. Let f ∈ L2(R), then χ[−n,n]f ∈ L2(R) ∩ L1(R). If we write

φ̂n(x) =

∫ n

−n

e−2πixξf(ξ)dξ

then
||φ̂n − f̂ ||2 = ||(χ[−n,n]f)

∧ − f̂ ||2 = ||χ[−n,n]f − f ||2 → 0
Thus,

f̂(ξ) = lim
n→∞

∫ n

−n

e−2πixξf(x)dx

exists in the L2-norm.

Example 2.22. Let H(x) = e−|x|. Show that

Ĥ(x) =

∫
R
H(t)eitxdt =

2

1 + x2

Note that if f ∈ L2(R), then ||f̂ ||2 = ||f ||2. By polarization identity∫
fg =

∫
f̂ ĝ

where f, g ∈ L2(R).
2.8. More on Convolution.

Theorem 2.23. Let f ∈ Lp(R), g ∈ Lq(R) and 1
p
+ 1

q
= 1. Then f ∗ g is an uniformly

continuous and bounded function on R with ∥f ∗ g∥∞ ≤ ∥f∥p∥g∥q. In particular, if
1 < p <∞, 1

p
+ 1

q
= 1, then f ∗ g ∈ C0(R).

Proof. By Hölder’s inequality, we get

|f ∗ g(x)| ≤
∫

|f(x− y)||g(y)| dy ≤ ∥τxf∥p∥g∥q = ∥f∥p∥g∥q.
Therefore, f ∗ g is bounded. Further,

|(τx(f ∗ g))(y)− (f ∗ g)(y)| ≤
∫

|τxf(y − ξ)− f(y − ξ)||g(ξ)|dξ ≤ ∥τxf − f∥p∥g∥q.
Hence,

∥τx(f ∗ g)− (f ∗ g)∥∞ ≤ ∥τxf − f∥p∥g∥q.
Since x 7→ τxf is uniformly continuous on R → L1(R), it follows that f ∗ g is uniformly
continuous on R.

Let 1 < p <∞, then 1 < q <∞ since 1
p
+ 1

q
= 1.

For given ϵ > 0, there exists fn, gn in C∞
c (R) such that

∥fn − f∥p < ϵ, ∥gn − g∥p < ϵ.
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(since Cc(R) = Lp(R) if 1 ≤ p <∞). Hence,
∥fn ∗ gn − f ∗ g∥∞ ≤ ∥fn − f∥p∥g∥q + ∥f∥p∥gn − g∥q.

Since gn → g in Lq, there exists Mq > 0 such that ∥gn∥q ≤Mq.
Therefore,

∥fn ∗ gn − f ∗ g∥∞ ≤ ϵMq + ∥f∥pϵ
Thus, fn ∗ gn → f ∗ g uniformly, but C0(R) is a complete space, hence f ∗ g ∈ C0(R). □

2.9. Riesz-Thorin Interpolation Theorem.

Theorem 2.24. Let (X,S, µ) and (Y, T, ν) be two σ-finite measure spaces. Let pi, qi ∈
[1,∞], i = 0, 1 and define

1

pt
=

1− t

p0
+

t

p1
,

1

qt
=

1− t

q0
+

t

q1
where 0 ≤ t ≤ 1. If T is a linear map from

Lp0(µ) + Lp1(µ) → Lq0(ν) + Lq1(ν)
such that

∥Tf∥qi ≤Mi∥f∥pi , i = 0, 1,
then

∥Tf∥qt ≤M1−t
0 M t

1∥f∥pt
(For a proof, see Real Analysis by G.B. Folland.)

Using R-T theorem we see that F.T. of a function f ∈ Lp(R), 1 ≤ p ≤ 2, exists as a
function in Lq, 1

p
+ 1

q
= 1.

2.10. Hausdorff-Young Inequality.

Theorem 2.25. Let 1 ≤ p ≤ 2. Then for f ∈ Lp(R), f̂ ∈ Lq(R), with ∥f̂∥q ≤ ∥f∥p,
where 1

p
+ 1

q
= 1.

Note that if 1 ≤ p < 2, then q ∈ [2,∞].

Similarly, if f ∈ Lp(S1), 1 ≤ p ≤ 2, then f̂ ∈ lq(Z), with 1
p
+ 1

q
= 1 and ∥f̂∥q ≤ ∥f∥p.

Proof. We know that F : L1(R) → L∞(R) satisfies
∥F(f)∥∞ ≤ ∥f∥1

and F : L2(R) → L2(R) with ∥F(f)∥2 = ∥f∥2.
Let

1

pt
=

1− t

1
+
t

2
,

1

qt
=

1− t

∞
+
t

2
Note that

1

pt
+

1

qt
= 1,

1

p
+

1

q
= 1.

so we can choose t ∈ (0, 1) such that 1
q
= t

2
and 1

p
= 1−t

1
+ t

2
. Hence by R-T inequality,

we get
∥F(f)∥q ≤ ∥f∥p

Thus, F.T. is a bounded linear function from Lp to Lq. □
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2.11. Young’s Inequality.

Theorem 2.26. Let 1 ≤ p, q, r ≤ ∞ and 1
p
+ 1

q
= 1 + 1

r
. If f ∈ Lp and g ∈ Lq, then

f ∗ g ∈ Lr and
∥f ∗ g∥r ≤ ∥f∥p∥g∥q

Proof. Case I: if p = 1, q = r, then
∥f ∗ g∥r = ∥f ∗ g∥q ≤ ∥f∥1∥g∥q

(by Minkowski integral inequality).
Case II: if p = q

q−1
, r = ∞, (1

p
+ 1

q
= 1, 1 < p, q <∞) then

∥f ∗ g∥r = ∥f ∗ g∥∞ ≤ ∥f∥p∥g∥q
(since f ∗ g ∈ C0(R)).

Case III: 1 ≤ q ≤ ∞, fix g ∈ Lq and consider Tg(f) = f ∗ g. Then
(i) Tg : L

1 → Lq satisfies ∥Tg(f)∥q ≤ ∥f∥1∥g∥q,
(ii) Tg : L

q → L∞ satisfies ∥Tg(f)∥∞ ≤ ∥f∥q′∥g∥q, when 1
q
+ 1

q′
= 1.

For Riesz-Thorin interpolation theorem, let p0 = 1, q0 = q; p1 = q′, q1 = ∞ and
M0 = ∥g∥1;M1 = ∥g∥q. Then

∥Tg(f)∥qt ≤M1−t
0 M t

1∥f∥pt
where

1

pt
=

1− t

p0
+

t

p1
= 1− t+

t

q′
,

1

qt
=

1− t

q0
+

t

q1
=

1− t

q
If we want qt = r, then 1

r
= 1−t

q
. Hence q

r
= 1− t, t = 1− q

r
. Thus 1

pt
= 1

p
. So,

1

p
+

1

q
= 1 +

1

r
and

1

q
+

1

q′
= 1.

Hence,
∥Tgf∥r ≤ ∥f∥p∥g∥q.

□

Notice that, by the Hausdorff-Young inequality, if 1 ≤ p ≤ 2, then for f ∈ Lp(R),
f̂ ∈ Lq(R) where 1

p
+ 1

q
= 1. Hence by continuity we can define

f̂(ξ) :
L2

= lim
n→∞

∫ n

−n

e−ixξf(x) dx.

However, if 1 < p < 2, we do not know how the f̂ looks like. For example, if f ∈ L1(R),
then

lim
λ→∞

∥f ∗Kλ − f∥1 = 0

and

(*) f(x) = lim
λ→∞

1

2π

∫
R
Gλ(ξ)f̂(ξ)e

ixξdξ

holds in L1(R).
For 1 < p < 2, we can generalize (*). For this, we need to verify the following: If

f ∈ L1(R) and g ∈ Lp(R), 1 < p < 2, then f ∗ g ∈ Lp and (f ∗ g)∧ = f̂ ĝ. Since C∞
0 (R) is

dense in Lp(R), for ϵ > 0, there exists gn ∈ C∞
0 (R) so that ∥g − gn∥Lp < ϵ.

Note that ĝn ∈ L1(R) (since second derivative of g satisfies ĝ2n(x) = (ix)2ĝn(x)) and
(**) F(gn ∗ f) = F(gn)F(f).
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As F : Lp → Lq, is a continuous linear map, from (**) it follows that
F(g ∗ f) = F(g)F(f).

Now, consider f = Kλ (Fejer kernel on R), then
(Kλ ∗ g)∧ = K̂λĝ = Gλĝ,

where
Gλ(ξ) = (1− |ξ|/λ)χ[−λ,λ](ξ)

Since ĝ ∈ Lq(R), q > 2, it is easy to see that Gλĝ ∈ L2(R). By inversion formula,

Kλ ∗ g(x) =
1

2π

∫
Gλ(ξ)ĝ(ξ)e

ixξdξ,

and Kλ ∗ g ∈ L2(R). Since Kλ is a good kernel and Kλ ∗ g → g in Lp(R), we can write
the following result:

Theorem 2.27. Let 1 ≤ p ≤ 2 and g ∈ Lp(R). Then

g(x) = lim
λ→∞

1

2π

∫
R
Gλ(ξ)ĝ(ξ)e

ixξdξ

in Lp(R).

Corollary 2.28. {f ∈ Lp, 1 ≤ p ≤ 2 supp f̂ is compact }, is dense in Lp(R).

Notice that, if f, g ∈ L1(R), then F(f∗g) = F(f)F(g) where F is the Fourier transform.

Question 2.29. Does F is unique that satisfies F(f ∗ g) = F(f)F(g)?

Note that if we write

F(f) =

∫
f(x)e−it0xdx = f̂(t0),

then F is a continuous linear functional on L1(R). We then shall see that such any
continuous linear functional is only F.T.

2.12. Riesz Theorem.

Theorem 2.30. Let 1 ≤ p < ∞ and (X,S, µ) be a σ-finite measure space. Then for
every continuous linear functional T on Lp(µ), there exists a unique g ∈ Lq(X), where
1/p+ 1/q = 1, such that

Tf =

∫
fg

Fourier Transform is unique. Now, suppose φ is a continuous linear functional on L1(R)
with ∥φ∥ ≤ 1 and φ(f ∗ g) = φ(f)φ(g), for all f, g ∈ L1(R). Then by the Riesz theorem,
there exists β ∈ L∞(R) such that

φ(f) =

∫
f(x)β(x)dx.

Then

φ(f ∗ g) =
∫

(

∫
f(x− y)g(y)dy)β(x)dx =

∫
g(y)φ(fy)dy

where fy(x) = f(x− y). On the other hand,

φ(f ∗ g) = φ(f)φ(g) = φ(f)

(∫
g(y)β(y)dy

)
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Hence

(*)

∫
(φ(fy)− φ(f)β(y))g(y)dy = 0, for all g ∈ L1(R).

By uniqueness in the Riesz theorem, it follows that
φ(f)β(y) = φ(fy), a.e. y

Since y → fy is continuous on R to L1(R) and φ is continuous on L1(R) → C, it follows
that RHS of (*) is continuous. Hence, we can assume β(y) is continuous, except on a set
of measure zero.

By replacing y → x+ y, we get
φ(f)β(x+ y) = φ(fx+y) = φ((fx)y) = φ(fx)β(y) = φ(f)β(x)β(y).

Since φ is non-zero, we can find f ∈ L1(R) such that φ(f) ̸= 0. Hence
β(x+ y) = β(x)β(y)

By using Theorem 2.1, there exists t0 ∈ R such that β(x) = e−it0x. Hence

φ(f) =

∫
f(x)e−it0xdx = f̂(t0).

□

Notice that for every φ (except φ = 0), there exists unique t ∈ R such that φ(f) = f̂(t),

because if s ̸= t, then there exists f ∈ L1(R) such that f̂(t) ̸= f̂(s).

2.13. Poisson Summation Formula. For f ∈ L1(R), write

φ(t) = 2π
∞∑

j=−∞

f(t+ 2πj).

Then φ is a 2π-periodic function on R and ∥φ∥L1(S1) ≤ ∥f∥L1(R). This can be seen by the
fact that ∫ 2π

0

|φ(t))|dt = 2π
∞∑

j=−∞

∫ 2π

0

|f(t+ 2πj)|dt

= 2π
∞∑

j=−∞

∫ 2π(j+1)

2πj

|f(s)|ds =
∫ ∞

−∞
|f(s)|ds.

Theorem 2.31. Let f ∈ L1(R). Then

(2.3)
∞∑

j=−∞

f(t+ 2πj) =
∞∑

j=−∞

f̂(j)eijt, ∀t ∈ R,

where f̂(j) is the Fourier transform.

Proof. To prove this identity, it is enough to show the Fourier coefficients of LHS is f̂(j).

1

2π

∫ 2π

0

∞∑
j=−∞

f(t+ 2πj)e−intdt =
∞∑

j=−∞

∫ 2π

0

f(t+ 2πj)e−intdt

by Beppo-Levi theorem.

=

∫
R
f(t)e−intdt = f̂(n)

Hence, by uniqueness of the Fourier series, we get the required identity. □
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Example 2.32. Prove that ∑ 1

(n+ x)2
=

π2

(sin πx)2

(Hint: Take g(x) = 1 − |x| for |x| < 1, = 0 otherwise in the Poisson summation for-
mula (2.3)).

2.14. Lp-Derivative of a Function on R. For h ∈ R and f a function on R, define

Dhf(x) =
f(x+ h)− f(x)

h

Definition 2.33. A function f ∈ Lp(R) is said to be differentiable in Lp sense if there
exists g ∈ Lp(R) such that

lim
h→0

∥Dhf − g∥p = 0.

Lemma 2.34. Let 1 ≤ p, q ≤ ∞ and 1
p
+ 1

q
= 1. Suppose f ∈ Lp, has derivatives f ′ in Lp

sense , then (f ∗ g)′ exists in the ordinary sense when g ∈ Lq and
(f ∗ g)′ = f ′ ∗ g.

Proof. We know that f ∗ g is continuous and f ′ ∈ Lp, therefore f ′ ∗ g is also continuous.
Thus

|Dh(f ∗ g)(x)− f ′ ∗ g(x)| = |(Dhf − f ′) ∗ g(x)| ≤ ∥Dhf − f ′∥p∥g∥q → 0 as |h| → 0
Hence

(f ∗ g)′ = f ′ ∗ g
□

Theorem 2.35. Let f ∈ Lp(R), 1 < p < ∞. Then f has derivative in Lp sense if
and only if f is absolutely continuous on each bounded interval [a, b] (except on a set of
measure zero) and its pointwise derivative f ′ ∈ Lp(R).

To prove this, we need a fact that AC[a, b] is a complete space under the norm:

∥f∥AC = |f(a)|+
∫ b

a

|f ′(t)|dt.

We know that f ∈ AC[a, b] if and only if f ′ exists a.e.,

f ′ ∈ L1[a, b] and f(x) = f(a) +

∫ x

a

f ′(t)dt

Hence, ∥f∥AC <∞ and ∥f ′∥AC = 0 =⇒ f(a) = 0, f ′(t) = 0 a.e. =⇒ f(t) = f(a) = 0.
( f ′ = 0 a.e. =⇒ f is constant, a non-trivial result (referred to Rayden book). )

Hence, (AC[a, b], ∥ · ∥AC) is a normed linear space.
If fn is a Cauchy sequence, then fn(a) and f

′
n are Cauchy sequences in C and L1([a, b]),

respectively. Let fn(a) → fa, f
′
n → g in L1. Write

f(x) = fa +

∫ x

a

g(t) dt

Then f is absolutely continuous and

∥fn − f∥AC ≤ |fn(a)− fa|+
∫ b

a

|g(t)− f ′
n(t)|dt

Hence, fn → f ∈ AC[a, b].
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Proof of Theorem 2.35. For simplicity, consider p = 1, q = ∞.
Suppose f has L1-derivative (or derivative in L1 sense). Then there exists g ∈ L1(R)

such that limh→0 ∥Dhf − g∥1 = 0. By the previous lemma, (f ∗Kλ)
′ exists ordinarily and

satisfies
(f ∗Kλ)

′ = f ′ ∗Kλ

Note that for each fixed λ, the function f ∗Kλ is smooth on R. Hence by MVT, f ∗Kλ ∈
AC[a, b], ∀a, b ∈ R That is,

(1) f ∗Kλ(x) = f ∗Kλ(x0) +

∫ x

x0

(f ∗Kλ)
′(t) dt

for some x0 ∈ [a, b]. Since f ∗Kλ
L1

−→ f , it follows that
f ∗Kλ(x) → f(x) a.e.

(as a subsequence of f ∗Kλ). Hence, we can choose x0 ∈ [a, b].
As (f ∗Kλ)

′ = g ∗Kλ → g (in L1), we can take limit in (1) and hence

f(x) = f(x0) +

∫ x

x0

g(t) dt a.e., x ∈ R.

This implies f ′ = g a.e. on R, and f ′ = g ∈ L1(R).
Conversely, suppose f ∈ AC[a, b], for all a, b ∈ R and pointwise derivative f ′ exists

and belongs to L1(R). Then
f(x+ h)− f(x)

h
− f ′(x) =

1

h

∫ h

0

(f ′(x+ t)− f ′(x)) dt

(since f ∈ AC[a, b], etc.)
Since f ′ ∈ L1(R), by Minkowski integral inequality, it follows that

∥Dhf − f ′∥1 ≤
1

|h|

∫ |h|

0

∥τtf ′ − f ′∥1 dt

< ∥τtf ′ − f ′∥1 < ϵ

whenever |h| < δ, as |t| < |h| < δ. Thus, f ′ is the L1-derivative of f .
If 1 < p, q < ∞, 1

p
+ 1

q
= 1, then Lp(R) ⊂ L1

loc(R). Hence, all the above calculations

make sense, and same conclusion is followed by Minkowski integral inequality. □

2.15. C∞ form of Urysohn lemma.

Lemma 2.36. Let K be a compact set that is contained in an open set O ⊂ R. Then
there exists f ∈ C∞

c (R) such that 0 ≤ f ≤ 1, f |K = 1 and suppf ⊂ O.

Proof. Let δ = d(K,Oc). Then δ > 0, and let
V = {x : d(x,K) < δ/3}.

Suppose φ ∈ C∞
c (R) such that

∫
φ = 1, φ(x) = 0 if |x| > δ/3. Write f = χV ∗ φ. Then

f |K = 1, 0 ≤ f ≤ 1, and supp(f) ⊂ {x : d(x,K) < 2δ/3} ⊂ O, and f ∈ C∞
c (R). Note

that φ can be constructed by choosing

φ(x) =

{
exp

(
− 1

1−x2

)
|x| < 1

0 |x| ≥ 1

□
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2.16. Exercise.

1. (a) Let f ∈ C∞
c (R) be nonzero and let P be a polynomial of degree n ≥ 1. Determine

whether the function P f̂ is bounded on R.
(b) Is the subspace

{f ∈ L2(R) : supp f̂ is compact}
dense in L2(R)?

2. Suppose f is continuously differentiable on [−R,R]. Prove that there exists a constant
C > 0 such that

|f̂(ξ)| ≤ C

|ξ|
, ξ ̸= 0.

3. Let f, g ∈ L2(R). Show that the convolution f ∗ g is a bounded continuous function
on R, and that

lim
|x|→∞

(f ∗ g)(x) = 0.

4. Let f ∈ L1(R) satisfy f(x) > 0 for all x ∈ R. Prove that there exists δ > 0 such that

|f̂(ξ)| < f̂(0), |ξ| > δ.
5. For n ∈ N, define

Fn(x) = χ[−1,1] ∗ χ[−n,n](x).
Verify that Fn ∈ Cc(R) with ∥Fn∥∞ = 2. Does the sequence {Fn(x)} converge uni-
formly to 2 on R?

6. For 1 ≤ p <∞, let f ∈ Lp(R) and set

F (x) =

∫ x+1

x

f(t) dt.

Show that F ∈ C0(R). Does this conclusion remain valid for f ∈ L∞(R)?
7. For f ∈ L1(R), prove the identity

2f̂(ξ) =

∫
R

[
f(x)− f

(
x− π

ξ

)]
e−iξx dx,

and deduce the Riemann–Lebesgue lemma.
8. Let f, g ∈ L1(R). Prove that∫

R
f(y)ĝ(y) dy =

∫
R
f̂(ξ)g(ξ) dξ.

If f̂ ∈ L1(R), deduce the Fourier inversion formula for f .
9. For n ∈ N, define

f(x) =
xn√
2π
e−

x2

2 .

Show that

f̂(ξ) = Pn(ξ)e
− ξ2

2 ,
where Pn is a polynomial of degree n.

10. A continuous function f : R → C is of moderate decrease if there exists A > 0 such
that

|f(x)| ≤ A

1 + x2
, x ∈ R.
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Suppose f is of moderate decrease and satisfies∫
R
f(y)e−y2e2xy dy = 0 ∀x ∈ R.

Prove that f ≡ 0.
11. Let f be of moderate decrease and define

f ∗Kλ(x) =
1
2π

∫ λ

−λ

(
1− |ξ|

λ

)
f̂(ξ)eiξx dξ.

Show that f ∗Kλ → f uniformly as λ→ ∞.
12. Let {kλ} ⊂ L1(R) be a family of good kernels. If f ∈ L∞(R) ∩ C(R), prove that

f ∗ kλ → f uniformly on every compact subset of R.
13. For 1 ≤ p ≤ 2, prove that

{f ∈ Lp(R) : supp f̂ compact}
is dense in Lp(R).

14. Show that
X = {f̂ : f ∈ L1(R)}

is dense in C0(R).
15. Let f ∈ C2

c (R). Prove that there exists g ∈ L1(R) ∩ L∞(R) such that ĝ = f .
16. For f ∈ L2(R), define the translation operator τxf(y) = f(y − x). Show that

X = {τxf : x ∈ R}
is dense in L2(R) if and only if f̂(ξ) ̸= 0 almost everywhere.

17. Let f ∈ L1(R) with compact support. Prove that f̂ is real-analytic on R. Does

f̂ ∈ L1(R)? What additional conclusion holds if f ∈ C2
c (R)?

18. Let f ∈ L1(R) with f ≥ 0. Show that

∥f̂∥∞ = f̂(0) = ∥f∥1.
19. Suppose f ∈ L1(R) is continuous at 0 and f̂(ξ) ≥ 0 for all ξ. Prove that f̂ ∈ L1(R)

and

f(0) =

∫
R
f̂(ξ) dξ.

20. For n ∈ N, let gn = χ[−1,1] ∗ χ[−n,n]. Show that gn is the Fourier transform of

fn(x) =
sin x sinnx

π2x2
∈ L1(R),

and that ∥fn∥1 → ∞. Conclude that the Fourier transform maps L1(R) into a proper
subspace of C0(R).

21. For f ∈ L1(R), define fλ(x) = λf(λx) and

φλ(t) = 2π
∞∑

j=−∞

fλ(t+ 2πj).

Show that
lim
λ→∞

∥φλ∥L1(S1) = ∥f∥L1(R).

22. For f ∈ L1(R), define

g(t) = 2π
∞∑

n=−∞

f(t+ 2πn).
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Show that g is periodic and
∥g∥L1(S1) ≤ ∥f∥L1(R).

23. For 1 ≤ p <∞, suppose f ∈ Lp(R) and h ∈ R. Define

∆hf(x) =
f(x+ h)− f(x)

h
.

Show that there exists g ∈ Lp(R) such that
lim
h→0

∥∆hf − g∥p = 0

iff f is absolutely continuous on bounded intervals (modulo null sets) and f ′ ∈ Lp(R).
Does this remain true for f ∈ L∞(R)?

24. Suppose f ∈ L∞(R) satisfies
25. Give an example of f ∈ L∞(0,∞) such that f ′ exists pointwise on (0,∞) but f ′ /∈

L∞(0,∞).
26. For f ∈ L1(Rn) and g ∈ Lp(Rn), 1 < p < 2, prove that f ∗ g ∈ Lp(Rn) and deduce that

f̂ ∗ g = f̂ ĝ.
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3. Distribution Theory

We know from the previous section that there are functions in Lp-spaces which are
differentiable in Lp-sense. That is, there exists g ∈ Lp such that ∥Dhf − g∥p → 0 as
|h| → 0. However, there is a large class of functions which are neither differentiable
nor their Lp-derivative exist. Though, there is a large sub-class of such functions whose
derivative can be realized with the help of certain class of differentiable functions, known
as “test functions”.

For example, suppose f is differentiable and g is a compactly supported differentiable
function on R. Then ∫ ∞

−∞
f ′g = −fg|∞−∞ −

∫ ∞

−∞
fg′ = −

∫ ∞

−∞
fg′,

because g is compactly supported. Therefore, this gives way to realize the derivative of
f ∈ L1

loc(R). For g ∈ C∞
c (R), write

Λf (g) =

∫
R
fg,

then the derivative of Λf can be defined by

Λ′
f (g) = −

∫
R
fg′.

In fact, functional Λf is all time differentiable and its k-th derivative is given by

DkΛf (g) = (−1)k
∫
R
fDkg,

where D = d
dx
.

In order to discuss “distributions” in detail, we need to derive a complete topology on
C∞

c (Rn). Since the space C∞
c (Rn) cannot be made complete under sup norm, a complete

topology on C∞
c (Rn) will be derived from a family of semi-norms (defined on compact

subsets of Rn). Thus, the space E(Rn) becomes a locally convex topological space.

3.1. Locally Convex Topology. Let {pi : i ∈ I} be a family of semi-norms on a
topological vector space X. For a finite set F ⊂ I, let

UF,ϵ =
⋂
i∈F

{x ∈ X : pi(x) < ϵ} =
⋂
i∈F

Vi,ϵ.

Then each VF,ϵ is convex and balanced. Let
B = {UF,ϵ : ϵ > 0, F ⊂ I,#(F ) <∞}.

Then the collection
T = {O ⊂ X : for all x ∈ O, there exists U ∈ B such that x+ U ⊂ O}

is a topology on X.
Obviously, T contains ∅ and X, and is closed under arbitrary unions. Now, let

O =
k⋂

i=1

Oi, Oi ∈ T
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If x ∈ O, then x ∈ Oi and there exists UFi,ϵi ∈ B such that x + UFi,ϵi ⊂ Oi. Write

ϵ = min1≤i≤k ϵi and F =
⋃k

i=1 Fi.Then ϵ > 0 and F is finite and hence

x+ UF,ϵ ⊂
k⋂

i=1

(x+ UFi,ϵi) ⊂ O.

The space (X, T ) is known as locally convex topological space.

Example 3.1. Show that a locally convex topological vector space X is Hausdorff if and
only if {pi : i ∈ I} separates points in X i.e., given x ∈ X, x ̸= 0, there exists i ∈ I such
that pi(x) ̸= 0.

Example 3.2. Let X be a locally convex Hausdorff space whose topology is induced by
{pi : i ∈ I}. Define

d(x, y) =
∑

2−n pn(x− y)

1 + pn(x− y)
Show that topology τd coincides with T .

Note that, in general settings, UF,ϵ plays the role of Bϵ(0) in Rn as Bϵ(0), ϵ > 0 forms
a local base at 0. Therefore,

B = {UF,ϵ : ϵ > 0, F ⊂ I,#(F ) <∞}
is a local base at 0 ∈ X.

Definition 3.3. (i) A sequence (xi)
∞
i=1 ⊂ X is said to converge to x ∈ X if for all

U ∈ B there exists N = N0 ∈ N such that x− xj ∈ U , for all j ≥ N .
(ii) (xi)

∞
i=1 ⊂ X is called a Cauchy sequence if for all U ∈ B, there exists N = N0 ∈ N

such that xk − xℓ ∈ U for all k, ℓ ≥ N .
(iii) X is called sequentially complete if every Cauchy sequence in X has a limit in X.

Lemma 3.4. A sequence (xi)
∞
i=1 ⊂ X converges to x ∈ X if and only if limn→∞ pn(xi −

x) = 0 for all n ∈ I.

Proof. Let Uj,ϵ = {x ∈ X : pj(x) < ϵ}. Then there exists N ∈ N such that pj(xj − x) <
ϵ for all j ≥ N, etc. □

Theorem 3.5. Let {pi}i∈I be a separating family of semi-norms on a vector space X,
and set

Vp,n = {x ∈ X : p(x) < 1/n}.
Then J = {Vpi,n : i ∈ I, n ∈ N} forms a convex balanced local base for a topology T on
X, which makes X into a locally convex space such that

(i) each pi is continuous, and
(ii) A set E ⊂ X is bounded if and only if for all i ∈ I, pi(E) is bounded.

Proof. Let x ∈ X and x ̸= 0. Then there exists pi such that pi(x) > 0. Therefore, for
some x, npi(x) > 1, implies x /∈ V (pi, n), a neighborhood of 0. Hence, {0} is closed. Since
T is translation invariant, each {x} ⊂ X is closed in (X,T ).

Addition is continuous: Let U be a neighborhood of 0 in X. Then
⋂

i∈I V (pi, ni) ⊂ U
(by the definition of topology T ). Let

V =
⋂
i∈I

V (pi, 2ni).
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Then V + V ⊂ U .
Consider (x1, x2) 7→ x1 + x2, and let U be an open set containing x1 + x2. Then

U − (x1 + x2) is a neighborhood of 0. Hence, there exists a neighbourhood V of 0 such
that

V + V ⊂ U − (x1 + x2)
then

(V + x1) + (V + x2) ⊂ U.
Thus, addition is continuous.

Scalar multiplication is continuous: Let x ∈ X and α ∈ C, U and V as above. Then
x ∈ sV for some s > 0. Write t = s

1+|α|s , and y = x+ tV , with |β − α| < 1/s. Then

βy − αx = β(y − x) + (β − α)x ∈ |β|tV + |β − α|sV ⊂ V + V ⊂ U
Since |β|t < (|α| + 1

s
)t = 1, and V is balanced, thus β(x + tV ) ⊂ αx + U , this implies

scalar multiplication is continuous.
(ii) Suppose E is a bounded subset of X. Since each V (pi, 1) is a neighborhood of 0,

there exists ki > 0 such that
E ⊂ kiV (pi, 1) = V (pi, 1/ki)
⇒ pi(x) < ki, ∀i,∀x ∈ E.

Conversely, suppose pi(x) < Mi, for all x ∈ E, for all i ∈ I, then for each neighborhood
V of 0,

U ⊃
m⋂
i=1

V (pi, ni)

which implies

E ⊂
m⋂
i=1

V (pi, 1/Mi) =
m⋂
i=1

MiniV (pi, ni)

If n > Mini for all i = 1, 2, . . . ,m, then

E ⊂ n
m⋂
i=1

V (pi, ni) ⊂ nU

Hence E is bounded in (X,T ). □

3.2. Topology of the spaces C∞(Ω) and DK. We define a topology on C∞(Ω) which
makes C∞(Ω) a Fréchet space with the Heine-Borel property, such that the space

DK = {φ ∈ C∞(Rn) : supp(φ) ⊂ K}
where K is a compact set in Ω, is a closed subspace of C∞(Ω).
Define a sequence of compact sets in Ω such that Ki ⊂ Ki+1

Ki = {x ∈ Ω : d(x,D(Ω) ≥ 1/i} ∩Bi,
where Bi = {x ∈ Rn : |x| < i}.

For f ∈ C∞(Ω), define
pN(f) = sup{|Dαf(x)| : x ∈ K, |α| ≤ N}.

These {pN}∞N=1 form a separating family of seminorms that makes C∞(Ω) a metrizable
locally convex topological space (exercise: use the previous theorem).

For x ∈ Ω, define δx(f) = f(x). Then each δx is a continuous linear functional in the
topology induced by {pN}∞N=1. That is, pN(fi) → 0 =⇒ |fi(x)| ≤ pN(fi) → 0. It is easy
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to see that
DK =

⋂
x∈Ω\K

ker δx

Hence DK is a closed subspace of C∞(Ω). Notice the collection
VN = {f ∈ C∞(Ω) : pN(f) < 1/N}, N = 1, 2, . . .

forms a convex balanced local base at 0 ∈ C∞(Ω).
If {fj} are a Cauchy sequence in C∞(Ω), then for each VN , there exists lN ∈ N such

that
fi − fj ∈ VN for all i, j > lN

=⇒ pN(fi, fj) < 1/N,

=⇒ |Dαfi(x)−Dαfj(x)| < 1/N, x ∈ KN

That is, Dαfi → gα on each compact set KN in Ω. In particular, fi(x) → g0(x). Thus
g0 ∈ C∞(Ω) and gα = Dαg0. This implies that fi → g0 in the topology of C∞(Ω). Hence
C∞(Ω) is a Fréchet space and the same is true for DK .

Suppose E ⊂ C∞(Ω) is closed and bounded. Then, by the previous theorem A, there
exists 0 < MN <∞ such that pN(f) < MN for all N = 1, 2, . . ., f ∈ E.

Thus, |Dαf | < MN on KN , |α| ≤ N . Hence,{
Dβf : f ∈ E

}
is an equicontinuous family onKN−1, if |β| ≤ N−1. By the Mean Value Theorem (MVT),
(1) |f(x)− f(y)| < N∥D1f∥∞|x− y|
Replacing f → Dβf in (1), we get

|Dβf(x)−Dβf(y)| ≤ ∥Dβ+1f∥∞∥x− y∥ ≤ ∥f∥N∥x− y∥
By Arzelà-Ascoli Theorem, every sequence (fn) in E has a convergent subsequence.

Hence, E is compact in C∞(Ω). Thus, C∞(Ω) has the Heine–Borel property. Since

d(f, 0) ≤
∑

2−n pN(f)

1 + pN(f)
< 2,

the topology on C∞(Ω) is not normable.
Now, for each fixed K ⊂ Ω, DK is a Fréchet space and

D(Ω) = C∞
c (Ω) =

⋃
K⊂Ω

DK

It is known as the space of test functions.
For φ ∈ D(Ω), define

∥φ∥N = sup {|Dαφ(x)| : x ∈ Ω, |α| ≤ N}
for N = 0, 1, 2, . . . .

Note: Restriction of these norms to DK gives the same topology as do the semi-norms
{pN}∞N=1. For this, let K ⊂ Ω compact. Then there exists N0 ∈ N such that K ⊂ KN ,
N ≥ N0, add for these N ≥ N0,

∥φ∥N = pN(φ), ∀φ ∈ DK

Since ∥φ∥N ≤ ∥φ∥N+1 ≤ . . . and
pN(φ) ≤ pN+1(φ) ≤ . . .
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the topology given by either sequence {∥pN}∞N=N0
or {∥ ·∥N}∞N=N0

will be the same. Thus,
the topology on DK coincides. Therefore,

VN =

{
φ ∈ DK : ∥φ∥N <

1

N

}
form a local base for DK .

Notice that ∥·∥∞N=0 can be used to define a locally convex metrizable topology on D(Ω),
but this topology is not complete.

For φ ∈ D(Ω), suppφ ⊂ [0, 1], φ > 0 on (0, 1),

φm(x) = φ(x− 1) +
1

2
φ(x− 2) +

1

m
φ(x−m)

is a Cauchy sequence in this topology, but (φm) is not completely supported. This hap-
pens because {pN}∞N=0 is not enough to prevent Cauchy sequences ”leaking” toward the
boundary of Ω, so that we can add more semi-norms to the family {pN}∞N=0 that allows
more functions on D(Ω) to be continuous.

Now, we define another topology τ on D(Ω) (in which Cauchy sequences do converge),
however τ is not metrizable.

(i) Let B = {W ⊂ D(Ω) : W is convex, balanced; sets with DK∩W ∈ τK , ∀K compact ⊂
Ω}.

(ii) Σ ={ unions of the form φ+W , φ ∈ D(Ω), W ∈ B}
NOte that The topology τ is different than the topology generated by the pN ’s as the

topologies τ includes more seminorms. For example, let φ ∈ D(Ω)), and {xi} ⊂ Ω : the
sequence having no limit point, for any Ci > 0,

p(φ) = sup
i
Ci|φ(xi)| <∞ (since there exist only finitely many i for each φ)

is a semi-norm on D(Ω) and p restricted to each Dk is continuous. In fact,
W = {φ ∈ D(Ω) : p(φ) < C}

is convex balanced and belongs to B as a τ -neighborhood of 0 ∈ D(Ω). This forces every
τ -bounded set (or Cauchy Sequence) in D(Ω)) to be concentrated on a common compact
set K ⊂ Ω. This will be formalized in the next theorem. That is, a sequence (φi) ∈ D(Ω)
converges to 0 if suppφi ⊂ K, ∀i = 1, 2 . . . .

Theorem 3.6. (a) τ is a topology on D(Ω), and B is a local base for τ .
(b) Σ makes D(Ω) into a locally convex topological vector space.

Proof. To prove (a), it is enough to show that for V1, V2 ∈ τ and φ ∈ V1 ∩ V2, there exists
W ∈ B such that φ +W ⊂ V1 ∩ V2. By definition, there exists φi +Wi ∈ τ such that
φ ∈ φi +Wi ⊂ Vi, i = 1, 2.

Choose K ⊂ Ω compact so that φ1, ψ2, φ ∈ DK . Since DWi
is open in DK and φ−ψi ∈

DK ∩Wi, it follows that φ− φi ∈ (1− δi)Wi for δi > 0 (it is like if x ∈ Bϵ(x) ⊂ W , then
x ∈ (1− δ)Bϵ/2(x) ⊂ (1− δ)W ) By the convexity of Wi, we get

φ− φi + δiWi ⊂ (1− δi)Wi + δiWi = Wi.
So φ+ δiWi ⊂ φi +Wi ⊂ Vi, i = 1, 2. Hence, φ+ (δ1W1)∩ (δ2W2) ⊂ V1 ∩ V2. This proves
(a).

(b) Let φ1, φ2 ∈ D(Ω) be distinct and
W = {φ ∈ D(Ω) : ∥φ∥0 < ∥φ1 − φ2∥0}.
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Then W ⊂ B and φ2 ∈ φ1 +W . Since φ2 is arbitrary, it implies that {φ1} is closed set
relative to τ . Notice that for every pair of ψ1, ψ2 ∈ D(Ω),

(ψ1 +
1
2
W ) + (ψ2 +

1
2
W ) = (ψ1 + ψ2) +W.

Hence, addition is continuous in (D(Ω), τ).
Pick α0 ∈ C and φ0 ∈ D(Ω). Then φ0 +

1
2
sW for some s > 0. Let |α − α0| < 1

s
and

t = s
2(1+(|α0|s) . Then for φ ∈ φ0 + tW ,

αφ− α0φ0 = α(φ− φ0) + (α− α0)φ0

∈ K/tW + 1
2
W

∈ 1
2
W + 1

2
W =W,

since |α|t < (|α|+ 1
s
)t = 1

2
. Thus,

α(φ0 + tW ) ⊂ α0φ0 + |α|tW ⊂ α0φ0 +W.
Hence, scalar multiplication is continuous. From onward, by D(Ω) we mean (D(Ω), τ).

□

Theorem 3.7. (a) A convex balanced subset V ∈ D(Ω) is open if and only if V ∈ B.
(b) The topology τK of DK ⊂ D(Ω) coincides with the topology on DK that is inherited

from D(Ω).
(c) If E is a bounded subset of D(Ω), then E ⊂ DK for some compact K ⊂ Ω and there

exists 0 ≤MN <∞ such that
∥φ∥N ≤MN , ∀φ ∈ E, N = 0, 1, 2, . . .

(d) D(Ω) has the Heine-Borel property.
(e) {φi} is a Cauchy sequence in D(Ω), then {φi} ∈ DK for some K ⊂ Ω, K compact.
(f) If φi → 0 in D(Ω), then there exists compact set K ⊂ Ω such that suppφi ⊂ K for

all i, and Dαφi → 0 uniformly for all α.
(g) In D(Ω), every Cauchy sequence is convergent.

Proof. (a) Suppose V ∈ τ . Claim V ∈ B. Consider φ ∈ DK ∩ V . By previous theorem,
there exists W ∈ B such that φ+W ⊂ V .

⇒ φ+ (DK ∩W ) ⊂ DK ∩ V
Since DK ∩W is open in DK , it implies DK ∩ V is open in DK for each V ∈ τ .

Conversely, if V ∈ B, then V ∈ τ , since B ⊂ τ .
(b) Let V ∈ τ , then DK ∩ V ∈ τK (by (a)). That is, τ ∩ DK ∈ τK for all K ⊂ Ω.

Conversely, suppose E ∈ τK for some K ⊂ Ω.
Claim. E = DK ∩ V for some V ∈ τ . Let φ ∈ E, then there exists N and δ > 0

such that
{ψ ∈ DK : ∥ψ − φ∥N < δ} ⊂ E

or
{ψ ∈ DK : ∥ψ∥N < δ} ⊂ E − φ

Let Wφ = {ψ ∈ DK : ∥ψ∥N < δ}, then Wφ ∩ DK ∈ τK (an open ball in DK). Hence
Wφ ∈ B, and

DK ∩ (φ+Wφ) = φ+Wφ ∩ DK ⊂ φ+ E − φ = E
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Let V =
⋃

φ∈E(φ+Wφ), then

E =
⋃
φ∈E

(φ+Wφ) ∩ DK

= union of all balls around φ ∈ E

= V ∩ DK .
(c) Let E be a bounded set in D(Ω). Suppose E /∈ DK for any K. Then there exists

φm ∈ E and a sequence {xm} ∈ Ω having no limit point such that φm(xm) ̸= 0,
m = 1, 2, . . .

Let
W =

{
φ ∈ D(Ω) : |φ(xm)| < 1

m
φm(xm),m = 1, 2, . . .

}
Since each K contains only finitely many xm,

W ∩ DK =
{
φ ∈ DK : |φ(xm)| < 1

m
φm(xm)

}
is open in DK . For this, let φ ∈ W ∩ DK . Then |φ(xm)| < 1

m
|φm(xm)|,m = 1, 2, . . . l

Let
p(φ) = sup

1≤m≤l
|φ(xm)| < Cl, where Cl = max

1≤m≤l

1
m
|φm(xm)|

Since p is continuous, it follows that W ∩ DK is open in DK . Thus W ∈ B. Since
φm /∈ mW for any m, it follows that E is not bounded.

Thus every bounded set E ⊂ D(Ω) must lie in some DK . By (b), E is bounded in
DK . This implies

sup{∥ψ∥N : ψ ∈ E} ≤MN <∞, N = 0, 1, 2, . . .
(d) It follows from (c), since DK has the Heine-Borel property. If E is a closed and

bounded set in D(Ω), then E is closed and bounded in DK , hence compact. Thus, E
is compact in D(Ω).

(e) If {φi} is a Cauchy Sequence in D(Ω), then it is bounded and hence φi ∈ DK for
some K. By (b), {φi} is Cauchy Sequence relative to DK .

(f) It is just restatement of (e).
Finally, (g) follows from (b), (e) and completeness of DK (i.e., DK is a Fréchet space).

□

Theorem 3.8. Let Λ be a linear map from D(Ω) to a locally convex space Y . Then the
following are equivalent:

(i) Λ is continuous.
(ii) Λ is bounded.
(iii) If φi → 0 in D(Ω), then Λφi → 0 in Y .
(iv) For all K ⊂ Ω, the restriction Λ : DK → Y is continuous.

Proof. (i) =⇒ (ii): Known.
(ii) =⇒ (iii): Suppose Λ is bounded and φi → 0 in D(Ω). Then φi → 0 in some DK ,

and hence Λ/DK is bounded. Therefore, Λ : DK → Y is continuous, and thus Λφi → 0
in Y .

(iii) =⇒ (iv): Suppose {φi} ⊂ DK and φi → 0 in DK . Then by (b) of the previous
theorem, φi → 0 in D(Ω). By (iii), Λφi → 0 in Y .
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(iv) =⇒ (i): Let U be a convex balanced neighborhood of 0 in Y , and write V =
Λ−1(U). Then V is a convex, also balanced set in D(Ω). By (a) of the previous theorem,
V ∈ τ if and only if DK ∩ V ⊂ τK for each K ⊂ Ω. By (iv), DK ∩ V ∈ τK , hence V ∈ τ .
Hence Λ is continuous.

□

Definition 3.9. A linear functional Λ on D(Ω) which is continuous in the topology τ of
D(Ω) is called distribution.

The space of all distributions is denoted by D ′(Ω).

Theorem 3.10. Let Λ be a linear functional on (D(Ω), τ). Then the following are equiv-
alent:

(i) Λ ∈ D ′(Ω).
(ii) For each compact set K ⊂ Ω, there exist N ∈ N and C > 0 such that

(∗) |Λψ| ≤ C∥ψ∥N for all ψ ∈ DK

This result is nothing but equivalence of (i) and (iv) in the previous theorem.

Note that if N in (∗) is independent of the choice of K, then the minimum of such N ’s
is called the order of the distribution Λ. If no such N exists, then we say Λ has ∞
order.

Remark 3.11. Since each DK is closed, it is obvious that DK has no interior in D(Ω).
Since there exists a countable sequence of compact sets in Ω such that Ω =

⋃∞
i=1Ki, Ki ⊂

Ki+1 we get

D(Ω) =
∞⋃
i=1

DKi

Since Cauchy sequence in D(Ω) does converges in D(Ω), by the Baire Category Theorem,
D(Ω) cannot be metrizable.

Example 3.12. Let f ∈ Lloc(Rn), then

Λf (φ) =

∫
fφ, φ ∈ D(Rn)

defines a distribution on D(Rn). However, every distribution cannot be generated by a
function in this way.

For example, Dirac distribution δ0 cannot be produced by any f ∈ Lloc(Rn).
On contrary, suppose, there exists f(̸= 0) ∈ Lloc(Rn) such that δ0(φ) =

∫
fφ for all

φ ∈ D(Rn). Consider φε ∈ D(Rn) such that support of φε ⊆ Bε(0), 0 ≤ φε ≤ 1, φε = 1
on Bε/2(0). Then

δ0(φε) =

∫
fφε

=⇒ 1 = φϵ(0) =

∫
Bε(0)

fφε ≤
∫
Bε(0)

|f | → 0 as ε→ 0.

However, every distribution is weakly assigned to some derivative of a continuous function.
We see it later. Notice that

|δ0(φ)| = |φ(0)| ≤ ∥φ∥∞ = ∥φ∥0, ∀φ ∈ D(Rn)
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Hence, δ0 is a distribution of order 0.
Example: Let µ be a Radon measure on Ω. Then

Λ(φ) =

∫
φ(x) dµ(x)

defines a distribution and
|Λ(φ)| ≤ ∥φ∥∞µ(K), φ ∈ DK , and for every choice of K, compact in Ω.

Hence, Λ = Λµ is a distribution of order 0. Later, we see that every distribution of order
zero is given by a Radon measure.

3.3. Local Equality of Distribution. Let Λi ∈ D′(Ω), i = 1, 2, and let O ⊂ Ω be open.
Then we say Λ1 = Λ2 in O if

Λ1φ = Λ2φ, ∀φ ∈ D(O).
For example, if f ∈ Lloc(R) and φ ∈ D(O), then Λf = 0 if and only if f = 0 almost
everywhere on O.

Similarly, if µ is a Radon measure, then Λµ = 0 if µ(B) = 0, for all B ∈ B(O), the
Borel σ-algebra on O.

Therefore, distribution can be discussed locally, and that leads to ways to describe
distributions globally, if its behavior is known locally.

For this, we need to describe “partition of unity”.

Theorem 3.13. Let A = {Oi; i ∈ I} be an open cover of Ω. Then, there exists a sequence
{ψi}i∈N ⊂ D(Ω) with ψi ≥ 0 such that

(i) each ψi has support in some Oi ∈ A,
(ii)

∑
i∈N ψi(x) = 1, ∀x ∈ Ω,

(iii) for each compact set K ⊂ Ω, ∃m ∈ N and an open set O ⊃ K such that
ψ1(x) + . . .+ ψm(x) = 1, ∀x ∈ O.

The collection {ψi} is called a locally finite partition of unity in Ω subordinate to the cover
A of Ω.

Remarks: From (ii) and (iii), it follows that each point x ∈ Ω has an open neighbor-
hood that intersects the supports of only finitely many ψi.

Proof. Let S = {p1, p2, . . .} be a countable dense set in Ω.
For ri ∈ Q, write Bi = Bri(pi), a closed ball that is contained in some Oi ∈ A. Let
Vi = Bri/2(pi). Then, Ω =

⋃
i Vi; since S = Ω, we can construct φi ∈ D(Ω) such that

0 ≤ φi ≤ 1, φi = 1 on Vi, φi = 0 outside Bi.
Define ψ1 = φ1, and inductively write

(1) ψi+1 = (1− φ1) · · · (1− φi)φi+1, i ≥ 1.
Then ψi = 0 outside Bi. This proves (i).

The relation
(2) ψ1 + . . .+ ψi = 1− (1− φ1) · · · (1− φi)

is trivially true if i = 1. Suppose (2) is true for some i, then by adding (2) at (i) we get
(2) is true for i+ 1. Since φi = 1 in Vi, from (2), it follows that

ψ1(x) + . . .+ ψm(x) = 1, ∀x ∈ V1 ∪ . . . ∪ Vm = O.
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Since for any x ∈ Ω, there exists m such that x ∈ V1∪ . . .∪Vm, this proves (ii). Moreover,
if K, compact in Ω, then K ⊂

⋃m
i=1 Vi for some m. This proves (iii).

Now, suppose Λ1,Λ2 ∈ D′(Ω) and for each x ∈ Ω, there exists Ox open in Ω such that
Λ1(φ) = Λ2(φ), ∀φ ∈ D(Ωx).

Then there exists a partition of unity {ψi, Bi}∞i=1 such that
∞∑
i=1

ψi(x) = 1, ∀x ∈ Ω.

Let φ ∈ D(Ω), then φ =
∑∞

i=1 ψiφ. The summation in RHS makes sense, since support
of φ intersects support of only finitely many ψi. Thus,

Λ1(φ) =
∑

Λ1(ψiφ) =
∑

Λ2(ψiφ) = Λ2(φ),

since ψφ ∈ D(Bi) ⊂ D(Oxi
), for some xi ∈ Ω. Hence, Λ1 = Λ2 in D(Ω). □

Theorem 3.14. Let A be an open cover of Ω, and for each O ∈ A, there exists Λ0 ∈ D′(O)
such that

Λ′
0 = Λ′′

0 ∀O′ ∩O′′ ̸= ∅.
Then there exists unique Λ̃ ∈ D′(Ω) such that

Λ̃φ = Λ0 in O, ∀O ∈ A.

Proof: Let {ψi, Bi}Ni=1 be a partition of unity subordinate to A. Let φ ∈ D(R), then

φ =
N∑
i=1

ψiφ (finite sum for each φ)

Define
Λ̃φ =

∑
ΛBi

(ψiφ).

Then Λ̃ is linear. To show that Λ̃ is continuous on D(R),
let φj → 0 in D(R). Then suppφj ⊂ K, K ′ for some K compact in R.

=⇒ supp ψiφj ⊂ K ∩Bi ⊂ Bi,
=⇒ ψiφj → 0 in D(Bi) (by Leibniz rule)

Hence, Λ̃φj → 0 in C in D′(Ω) (the weak* topology of D(R)). Thus, Λ̃ ∈ D′(⩽̸).
Let φ ∈ D(O), O ∈ A. Then

ψiφ ∈ D(Bi ∩O) ∀i,
and

ΛBi
(ψiφ) = Λ0(ψiφ) (by hypothesis)

Thus,

Λ̃φ =
∑

Λ0(ψiφ) = Λ0(φ).

Suppose Λ be any other distribution such that
ΛO′ = ΛO′′ if O′ ∩O′′ ̸= ∅.

Then for each Bi, there exists Oi ∈ A such that Bi ⊂ Oi

ΛBi
= ΛOi

= Λ̃Bi
.

For φ ∈ D(⩽̸), φ =
∑
ψiφ, suppψi ⊂ Bi.

Λ(φ) =
∑

Λ(ψiφ) =
∑

Λ̃Bi
(ψiφ) =

∑
Λ̃(φ)

=⇒ Λ = Λ̃
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Theorem 3.15. A distribution Λ ∈ D′(Ω) is of order 0 if and only if there exists a Radon
measure µ (possibly complex-valued) such that Λ = Λµ.

Proof. If ∃µ a Radon measure. Then order(Λµ) = 0.
Conversely, suppose order(Λ) = 0. Then there exists 0 < C < ∞, such that |Λφ| ≤

C ||φ||∞, ∀φ ∈ C∞
c (Ω). Consider {ψi, Bi}∞i=1, a partition of unity. Then suppψi ⊂ Bi,

∪Bi = Ω. Then Λ is continuous on each D(Bi) and hence it can be extended to C(Bi).
By Riesz representation theorem, there exists a complex-valued Radon measure µi on Bi

such that

Λ(φ) =

∫
φdµi, ∀φ ∈ C(Bi).

In particular, for each φ ∈ D(Bi). Let φ belong to D(⩽̸), then

φ =
∑

ψiφ,

and

Λ(φ) =
∑

Λ(ψiφ) =
∑∫

ψiφdµi

i.e. Λφ =

∫
φ
(∑

ψidµi

)
=

∫
φdµ,

where µ =
∑
ψidµi. □

3.4. Derivative of distribution. Notice that for φ ∈ D(Ω) and f ∈ C∞(Ω),∫
Ω

fφ′ = fφ|δΩ −
∫
Ω

fφ′ = −
∫
Ω

fφ′,

since suppφ ⊂ K ⊂ Ω. This gives way to define the derivative of distribution Λ ∈ D′(Ω)
by

Λ′(φ) = −Λ(φ′).
or,

∂αΛ(φ) = (−1)|α|Λ(∂αφ).
Hence, DαΛ is a linear map. Since Λ ∈ D′(Ω), for compact set K ⊂ Ω, ∃0 < C <∞ and
N ∈ N such that

|Λφ| ≤ C||φ||N , ∀φ ∈ DK .
Then

|DαΛ(φ)| = |(−1)|α|Λ(Dαφ)| ≤ C||φ||N+|α| for all φ ∈ DK .
Thus, ∂αΛ ∈ D′(Ω). We infer that every distribution in D′ is infinitely differentiable in
the weak sense. Since

DαDβφ = Dα+βφ = DβDαφ,
it follows that

DαDβΛ = DβDαΛ.

Example 3.16. Let f ∈ L1
loc(R). Then show that

Dαf ∈ D′(Ω) and DαΛf (φ) = (−1)|α|(Dαφ).
Does distributional derivative of a function is same as its usual derivative?

i.e., whether ∫
Dαfφ = (−1)|α|

∫
fDαφ?
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If f ∈ C∞(R), then ∫
Dαfφ = (−1)|α|

∫
fDαφ,

by “integration by parts”. However, this is not true in general.

Example 3.17. Let Ω = (−2, 2), consider f is the Cantor function on [0, 1]. Then
f ∈ L1(−2, 2) and f ′ = 0 almost everywhere.∫

f ′φ = 0 ̸= −
∫
fφ′

Example 3.18. If f is absolutely continuous on each [a, b] ⊂ R, then Λ′
f = Λf ′ . That is,∫

f ′φ = −
∫
fφ′.

(Note that “integration by parts” holds for absolutely continuous and integrable functions

Multiplication by a Function. Let Λ ∈ D′(Ω), and f ∈ C∞(Ω). Then

(1) (fΛ)(φ) = Λ(fφ) defines a linear functional on D(Ω).
(2) Dα(fφ) =

∑
β≤α cα,βD

α−βfDβf ·Dβφ (By Leibniz formula)

Since Λ ∈ D′(Ω), for each compact set K in Ω, there exists 0 < C <∞ and N ∈ Z+ such
that

|Λφ| ≤ C∥φ∥N , ∀φ ∈ DK .
By (2), there exists C ′ = C ′(f,K,N) such that

∥fφ∥ ≤ C ′∥φ∥N , ∀φ ∈ DK

Hence,
|fΛ(φ)| ≤ CC ′∥φ∥N , ∀φ ∈ DK .

Thus, fΛ ∈ D′(Ω).

3.5. Sequence of Distributions. Since the topology of D(Ω) provides a weak∗-topology
on D′(Ω), that makes D′(Ω) a locally convex topological vector space, the convergence in
D′(Ω) is understood by point evaluation. That is, {Λi}∞i=1 ∈ D′(Ω) is said to converge to
Λ if

Λi(φ) → Λ(φ), ∀φ ∈ D(Ω)
In particular, if fi ∈ L1

loc∞(Rn), then fi → Λ in D′(Rn) if
lim fiφ = λφ, ∀φ ∈ D(Rn).

Theorem 3.19. Let Λi ∈ D′(Ω) and Λ(φ) = limΛi(φ) exists for each φ ∈ D(Ω). Then
Λ ∈ D′(Ω) and DαΛi → DαΛ in D(Ω).

Proof. Since Λφ = limΛiφ, ∀φ ∈ D(Ω), it implies that
Λ(φ) = limΛi(φ), ∀φ ∈ DK

As DK is a Fréchet space, by Banach-Steinhaus Theorem, Λ/DK is continuous for each
K ⊂ Ω. Hence, Λ is constant on D(Ω).
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Now,
Dα(Λ)(φ) = (−1)|α|Λ(Dαφ)

= (−1)|α| limΛi(D
αφ)

= limDαΛi(φ)
□

Theorem 3.20. If Λi → Λ in D′(Ω) and gi → g in C∞(Ω), then giΛi → gΛ in D′(Ω).

Proof. Note that gi → g in C∞(Ω) means the Fréchet space topology of C∞(Ω).
(i.e., topology generated by pN(f) = sup|α|≤N,x∈KN

|Dαf(x)|, where Ω =
⋃
KN , KN ⊂

KN+1 with local base
VN = {f ∈ C∞(Ω) : pN(f) < 1/N, }N = 1, 2, . . .

Now, for fixed φ ∈ D(Ω), define a bilinear form B(g,Λ) = gΛ(φ) = Λ(gφ). Then B is
co-ordinatewise continuous, and by Theorem 2.17 (Rudin FA, Page 52), and the fact that
C∞(Ω) is a Fréchet space, D′(Ω) and C are topological vector spaces, it follows that

B(gi,Λi) → B(g,Λ) as i→ ∞
Hence,

(giΛi)(φ) → (gΛ)(φ), ∀φ ∈ D(Ω).
□

3.6. Support of a Distribution. Let U be an open set in Ω and Λ ∈ D′(Ω). We say
that Λ is zero in O if

Λ(φ) = 0, ∀φ ∈ D(O)
Let W =

⋃
{O ⊂ Ω : Λ|O = 0}. Then Λ|W = 0. The complement of W is called the

support of Λ. Note that O forms an open cover of W .
There exists a partition of unity {ψi} in W such that suppψi ⊂ Oi for some Oi such

that Λ|Oi
= 0, and

φ =
∞∑
i=1

φψi, ∀φ ∈ D(W )

Hence,

Λφ =
∞∑
i=1

Λ(φiφ) = 0, that is, Λ|W = 0.

Theorem 3.21. Let Λ ∈ D′(Ω) and set SΛ = supp Λ.

(a) If suppφ ∩ SΛ = ∅ for some φ ∈ D(Ω), then Λφ = 0 (by definition of support).
(b) If SΛ = ∅, then Λ = 0 (i.e., W = Ω).
(c) If ψ ∈ C∞(Ω) and ψ = 1 on an open set V ⊃ SΛ, then ψΛ = Λ.
(d) If SΛ is a compact set, then Λ is of finite order. In fact, there exists 0 < C <∞ and

some N ∈ NU{0} such that
|Λφ| ≤ C∥φ∥N , ∀φ ∈ D(Ω)

Further, Λ extends uniquely to a continuous linear functional on C∞(Ω).

Proof. Proofs of (a) & (b) are trivial.
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(c) If ψ = 1 on V ⊃ SΛ, then
supp(φ− ψφ) ∩ SΛ = ∅, ∀φ ∈ D(Ω).

Hence by (a), Λ(φ− ψφ) = 0. That is,
Λφ = ψΛφ, ∀φ ∈ D(Ω).

(d) If SΛ is compact, then we can always find ψ ∈ C∞
c (Ω) such that ψ = 1 on V ⊃ SΛ,

for some open set V ⊂ Ω. Let suppψ = K. Then from (c),
Λ(φ) = ψΛ(φ), if φ ∈ D(Ω).

Since Λ ∈ D ′(Ω), there exists C1 > 0 such that
|Λφ| ≤ C1∥φ∥N , ∀φ ∈ DK

for some N ∈ N ∪ {0} = Z+ (say). Further, by Leibniz’s rule, it follows that there exists
C2 > 0 such that

∥ψφ∥N ≤ C2∥φ∥N ,
(i.e. suppφ = K cpt). Since Λφ = Λ(ψφ) if φ ∈ D(Ω), define

Λf = Λ(ψf) for f ∈ C∞(Ω).
Now if fi → 0 in C∞(Ω), then Dαfi → 0 on uniformly on each compact set K ⊂ Ω. Once
again, by Leibniz’s formula, it follows that

ψfi → 0 in D(Ω).
=⇒ Λ(ψfi) → 0 in D′(Ω).

That is, Λfi → 0 in the toplogy of D′(Ω). Notice that if f ∈ C∞(Ω) and K0 ⊂ Ω is
compact, then there exists φ ∈ D(Ω) such that φ = f on K0. (By Urysohn’s lemma, there
exists ψ ∈ D(Ω) such that ψ = 1 on K0, and hence φ = fψ = f on K0). It follows that
D(Ω) is dense in C∞(Ω). (i.e. ∥φ−f∥K = ∥fψ−f∥K < ϵ). Hence, Λ ∈ D′(Ω) has unique
extension to C∞(Ω).

□
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3.7. Exercise.

1. (a) If Λ′ is a compactly supported distribution, must it follow that Λ itself is compactly
supported?

(b) Is every compactly supported distribution necessarily of finite order?

(c) Must the Fourier transform of every compactly supported function in L1(R) be real
analytic?

(d) Determine the distributional support of the function χQ, where Q denotes the set
of rational numbers.

(e) For n ∈ N, let δn denote the Dirac delta distribution at n. Does δn → 0 in the
weak∗ topology of C0(R) (the space of continuous functions vanishing at infinity)?

(f) Determine the order of Λ ∈ D′(R) defined by

Λ(φ) =

∫
|x|>1

log(x)φ(x) dx.

2. Suppose f is a continuous function on Rn such that
∫
Rn fφ = 0 for all φ ∈ D(Rn).

Show that f = 0.
3. Let Λ = Λf , where f is a continuous function on Rn. Show that suppΛf = supp f.

Does the same statement remain valid for locally integrable functions?
4. Show that there exists ψ ∈ D(R) such that φ = ψ(k) if and only if∫

R
p(x)φ(x) dx = 0

for each polynomial p of degree at most k − 1.
5. If Λ ∈ D′(R) satisfies Λ′ = 0, prove that Λ = Λc for some constant c.
6. Show that every φ ∈ D(Rn) can be written as

φ = ψ′ + cφ0,
where φ0 is a fixed test function in D(R) with

∫
R φ0 ̸= 0.

7. Show that every φ ∈ D(Rn) can be written as
φ = xψ + cφ0,

where φ0 is a fixed test function in D(R) with φ0(0) ̸= 0. Deduce that if Λ ∈ D′(R)
and xΛ = 0, then Λ = cδ0.

8. Determine all f ∈ C∞(R) such that fδ′0 = 0.
9. Show that if Λ ∈ D′(R) is compactly supported, then Λ′ is also compactly supported.
10. Verify that

⟨Λ, φ⟩ =
∞∑
n=1

φ(n)(n)

defines a distribution on R. Is Λ compactly supported?
11. Let H = χ(−∞,0) and let hn be a sequence of differentiable functions such that hn → H

in D′(R). Show that h′n → δ0 in D′(R). Does the conclusion remain valid ifH = χ(−∞,0]?
12. Let Λn ∈ D′(R) be defined by

⟨Λn, φ⟩ = n
(
φ
(
1
n

)
− φ

(
− 1

n

) )
.

Determine limΛn.
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13. For a > 0, define

⟨Λa, φ⟩ =
(∫ −a

−∞
+

∫ ∞

a

)
φ(x)

|x|
dx+

∫ a

−a

φ(x)− φ(0)

|x|
dx.

Show that Λa defines a distribution on D(R). Find lima→0 Λa in D′(R) and compute
its distributional derivative.

14. For Λ ∈ D′(R), define

⟨G,φ⟩ =
∫
R
⟨Λ, φy⟩ dy,

where for φ ∈ D(R2), we set φy(x) = φ(x, y). Show that G ∈ D′(R2).
15. Let Λi ∈ D′(R) for i = 1, 2 be such that

⟨Λ1, φ⟩ = 0 ⇐⇒ ⟨Λ2, φ⟩ = 0.
Show that Λ1 = cΛ2 for some constant c.

16. If Λ ∈ D′(R) satisfies Λk = 0, prove that Λ is a polynomial of degree at most k − 1.
17. Let Ω = (0,∞). Define

⟨Λ, φ⟩ =
∞∑
n=1

φ(n)
(
1
n

)
, φ ∈ D(Ω).

Show that Λ is a distribution of infinite order, and prove that Λ cannot be extended
to a distribution on R.

18. If Λ ∈ D′(R) has order N, show that Λ = f (N+2) in D′(R) for some continuous function
f. If Λ = δ0, what are the possible choices for f?

19. For k ∈ N, define fk = kχ
(
1
k
,
2
k
)
. Show that fk → δ0 in D′(R). Furthermore, show

that although f 2
k (x) → 0 pointwise, the sequence f 2

k does not converge in the sense of
distributions.

20. Define

f(x) =


x2, x < 1,

x2 + 2x, 1 ≤ x ≤ 2,

2x, x ≥ 2.
Find the distributional derivative of f.

21. Define

f(t) =

{
e−t, t > 0,

−et, t < 0.

Show that f ′′ = 2δ′0 + f. Deduce that the Fourier transform of f is

f̂(x) = − 2ix

1 + x2
.
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22. If H = χ(−∞,0), show that

(a) H ∗ φ(x) =
∫ x

−∞
φ(t) dt,

(b) δ′0 ∗H = δ0,

(c) 1 ∗ δ′0 = 0,

(d) 1 ∗ (δ′0 ∗H) = 1 ∗ δ0 = 1,

(e) (1 ∗ δ′0) ∗H = 0.
23. Let {xk} be a sequence of real numbers with lim |xk| = ∞. Show that δ(x−xk) → 0 in

the sense of distributions.
24. Determine all f, g ∈ C∞(R) such that fδ0 + gδ′0 = 0.
25. Define

f(x) =

{
e−x, x ≥ 0,

1, x < 0.

Show that the Fourier transform of f satisfies (1− ix)f̂ = Ĥ in the sense of tempered
distributions, where H = χ(−∞,0).

26. Find the distributional derivative of f(x) = ex
2
χ[0,1](x).

27. Suppose f ∈ L∞(R) satisfies∫
R
f(y)e−y2e2xy dy = 0 ∀x ∈ R.

Prove that f ≡ 0.
28. Let Λ be a distribution on R such that x2Λ = 0. Show that Λ = cδ0 + dδ′0 for some

constants c, d.
29. For n ∈ N, let fn = χ[0,n). Find limn→∞ f ′

n in the weak∗ topology of D(R).
30. Classify all continuous functions on R that define tempered distributions.
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