DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA731: Linear Algebra and Functional Analysis
End Semester Exam
Instructors: B. Bhattacharjya \& R. Srivastava
Time: 3 hours
April 23, 2013
Maximum Marks: 50

Linear Algebra

1. For $A \in M_{n}(\mathbb{C})$, define $\|A\|=\max \left\{\sqrt{\lambda}: \lambda\right.$ is an eigenvalue of $\left.A^{*} A\right\}$. Show that $\|\cdot\|$ is a matrix norm on $M_{n}(\mathbb{C})$.
2. Let $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$ be a positive definite matrix such that $a_{i i}=1$ for all $i=1, \ldots, n$. Show that $\left|a_{i j}\right| \leq 1$ for all $i, j=1, \ldots, n$. Can equality occur for all $i, j=1, \ldots, n$?
3. Let $A \in M_{n}(\mathbb{C})$. Show that $A^{*} A$ is unitarily similar to $A A^{*}$.
4. Let $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$ be a positive semi-definite matrix. Show that the matrix $\left[\left|a_{i j}\right|^{2}\right]$ is also positive semi-definite.

Functional Analysis

5. Let $R: l^{2}(\mathbb{N}) \rightarrow l^{2}(\mathbb{N})$ be the right shift operator defined by $R(x)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$, for each $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in l^{2}(\mathbb{N})$. Prove that
(a) resolvent set $\rho(R)=\{\lambda \in \mathbb{C}:|\lambda|>1\}$.
(b) point spectrum set $\sigma_{p}(R)=\emptyset$.
(c) continuous spectrum set $\sigma_{c}(R)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
(d) residual spectrum set $\sigma_{r}(R)=\{\lambda \in \mathbb{C}:|\lambda|<1\}$.
6. Let $\left(x_{n}\right)$ be a Cauchy sequence in a reflexive normed linear space X. Show that $\left(x_{n}\right)$ converges to some point $x \in X$.
7. Let X be a reflexive Banach space and $f \in X^{*}$. Prove that there exists a unit vector $x_{o} \in X$ such that $f\left(x_{o}\right)=\|f\|$.
8. For a 2π-periodic function $f \in L^{2}[-\pi, \pi]$, define a sequence $\left(\varphi_{n}\right)$ of linear functionals by

$$
\varphi_{n}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t
$$

Show that $\left\|\varphi_{n}\right\|=1$ and $\varphi_{n}(f) \rightarrow 0$.
9. Let $T:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ be a linear map defined by $T f(t)=f\left(\frac{t}{3}\right)$. Find the spectral radius of T and show that $0 \in \sigma(T)$. Is T compact?
10. Show that the space $c_{o}(\mathbb{N})$ is a closed and proper subspace of $l^{\infty}(\mathbb{N})$.
11. Let φ be a bounded function on \mathbb{R}. Define $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by $T(f)(t)=\varphi(t) f(t)$. Show that T is a bounded operator. Find the adjoint operator T^{*} of T.
12. Let $g_{n} \in L^{2}[0,1]$ be defined by

$$
g_{n}(t)= \begin{cases}\sqrt{n} & \text { if } 0 \leq t<1 / n \\ 0 & \text { if } 1 / n \leq t \leq 1\end{cases}
$$

Show that $\left\|g_{n}\right\|_{2}=1$ and g_{n} converges weakly to 0 .
13. Suppose T is a bounded linear operator on a complex Hilbert space H such that $\langle T x, x\rangle=0$, for all $x \in H$. Show that $T=0$.
14. Let $X=\left(C[0,1],\|\cdot\|_{\infty}\right)$. Define a map $T: X \rightarrow \mathbb{C}$ by

$$
T(f)=\int_{0}^{1} t f(t) d t, \text { for all } f \in X
$$

Find a vector $f_{o} \in X$ such that $T\left(f_{o}\right)=\|T\|$.
15. Let T be a bounded and self-adjoint operator on a Hilbert space H. Suppose there exists $k>0$ such that $\|T x\| \geq k\|x\|$, for each $x \in H$. Prove that the equation $T x=y$ has a unique solution for each $y \in H$.
16. Let $\left(T_{n}\right)$ be a sequence of bounded linear operator on a Banach space X such that $\left\|T_{n}-T\right\| \rightarrow 0$. If T_{n}^{-1} exist, $\forall n \in \mathbb{N}$ and $\left\|T_{n}^{-1}\right\|<1$, then prove that $T^{-1} \in B(X)$.
17. Let X be a normed linear space and Y be a Banach space. Let M be a dense subspace of X and $T \in B(M, Y)$. Show that there exists a unique extension $\tilde{T} \in B(X, Y)$ of T such that $\|\tilde{T}\|=\|T\|$.

