DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA731: Linear Algebra and Functional Analysis Instructors: B. Bhattacharjya & R. Srivastava Time: 3 hours End Semester Exam April 23, 2013 Maximum Marks: 50

 $\mathbf{2}$

1

 $\mathbf{2}$

 $\mathbf{2}$

3

Linear Algebra

- 1. For $A \in M_n(\mathbb{C})$, define $||A|| = \max\left\{\sqrt{\lambda} : \lambda \text{ is an eigenvalue of } A^*A\right\}$. Show that $||\cdot||$ is a matrix norm on $M_n(\mathbb{C})$.
- 2. Let $A = [a_{ij}] \in M_n(\mathbb{C})$ be a positive definite matrix such that $a_{ii} = 1$ for all i = 1, ..., n. Show that $|a_{ij}| \le 1$ for all i, j = 1, ..., n. Can equality occur for all i, j = 1, ..., n?
- 3. Let $A \in M_n(\mathbb{C})$. Show that A^*A is unitarily similar to AA^* .
- 4. Let $A = [a_{ij}] \in M_n(\mathbb{C})$ be a positive semi-definite matrix. Show that the matrix $[|a_{ij}|^2]$ is also positive semi-definite.

Functional Analysis

- 5. Let $R: l^2(\mathbb{N}) \to l^2(\mathbb{N})$ be the right shift operator defined by $R(x) = (0, x_1, x_2, x_3, \ldots)$, for each $x = (x_1, x_2, x_3, \ldots) \in l^2(\mathbb{N})$. Prove that
 - (a) resolvent set $\rho(R) = \{\lambda \in \mathbb{C} : |\lambda| > 1\}.$ 1
 - (b) point spectrum set $\sigma_p(R) = \emptyset$.
 - (c) continuous spectrum set $\sigma_c(R) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$
 - (d) residual spectrum set $\sigma_r(R) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}.$
- 6. Let (x_n) be a Cauchy sequence in a reflexive normed linear space X. Show that (x_n) converges to some point $x \in X$.
- 7. Let X be a reflexive Banach space and $f \in X^*$. Prove that there exists a unit vector $x_o \in X$ such that $f(x_o) = ||f||$.
- 8. For a 2π -periodic function $f \in L^2[-\pi, \pi]$, define a sequence (φ_n) of linear functionals by

$$\varphi_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$$

Show that $\|\varphi_n\| = 1$ and $\varphi_n(f) \to 0$.

9. Let $T : (C[0,1], \|.\|_{\infty}) \to (C[0,1], \|.\|_{\infty})$ be a linear map defined by $Tf(t) = f\left(\frac{t}{3}\right)$. Find the spectral radius of T and show that $0 \in \sigma(T)$. Is T compact?

 $\mathbf{2}$

3

 $\mathbf{2}$

- 10. Show that the space $c_o(\mathbb{N})$ is a closed and proper subspace of $l^{\infty}(\mathbb{N})$.
- 11. Let φ be a bounded function on \mathbb{R} . Define $T : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $T(f)(t) = \varphi(t)f(t)$. Show that T is a bounded operator. Find the adjoint operator T^* of T.
- 12. Let $g_n \in L^2[0,1]$ be defined by

$$g_n(t) = \begin{cases} \sqrt{n} & \text{if } 0 \le t < 1/n, \\ 0 & \text{if } 1/n \le t \le 1. \end{cases}$$

Show that $||g_n||_2 = 1$ and g_n converges weakly to 0.

- 13. Suppose T is a bounded linear operator on a complex Hilbert space H such that $\langle Tx, x \rangle = 0$, for all $x \in H$. Show that T = 0.
- 14. Let $X = (C[0,1], \|.\|_{\infty})$. Define a map $T: X \to \mathbb{C}$ by

$$T(f) = \int_0^1 tf(t)dt$$
, for all $f \in X$.

Find a vector $f_o \in X$ such that $T(f_o) = ||T||$.

- 15. Let T be a bounded and self-adjoint operator on a Hilbert space H. Suppose there exists k > 0 such that $||Tx|| \ge k||x||$, for each $x \in H$. Prove that the equation Tx = y has a unique solution for each $y \in H$.
- 16. Let (T_n) be a sequence of bounded linear operator on a Banach space X such that $||T_n T|| \to 0$. If T_n^{-1} exist, $\forall n \in \mathbb{N}$ and $||T_n^{-1}|| < 1$, then prove that $T^{-1} \in B(X)$. **4**
- 17. Let X be a normed linear space and Y be a Banach space. Let M be a dense subspace of X and $T \in B(M, Y)$. Show that there exists a unique extension $\tilde{T} \in B(X, Y)$ of T such that $\|\tilde{T}\| = \|T\|$.

END