MA 541 (Real Analysis)

Assingment 3B

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) It is possible to define a metric d on \mathbb{R}^{2} such that in $\left(\mathbb{R}^{2}, d\right)$, the sequence $\left\{\left(\frac{1}{n}, 0\right)\right\}$ converges but the sequence $\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\}$ does not converge.
(b) There exists a metric space having exactly 36 open sets.
2. Examine whether d is a metric on X, where
(a) $X=\mathbb{R}$ and $d(x, y)=\min \left\{\sqrt{|x-y|},|x-y|^{2}\right\}$ for all $x, y \in \mathbb{R}$.
(b) $X=\mathbb{R}$ and for all $x, y \in \mathbb{R}, d(x, y)=\left\{\begin{array}{cl}1+|x-y| & \text { if exactly one of } x \text { and } y \text { is positive, } \\ |x-y| & \text { otherwise. }\end{array}\right.$
(c) $X=\mathbb{R}^{2}$ and $d(x, y)=\left(\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}}$ for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
(d) $X=\mathbb{R}^{n}$ and $d(x, y)=\left[\left(x_{1}-y_{1}\right)^{2}+\frac{1}{2}\left(x_{2}-y_{2}\right)^{2}+\cdots+\frac{1}{n}\left(x_{n}-y_{n}\right)^{2}\right]^{\frac{1}{2}}$ for all $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(e) $X=\mathbb{C}$ and for all $z, w \in \mathbb{C}, d(z, w)=\left\{\begin{array}{cl}\min \{|z|+|w|,|z-1|+|w-1| & \text { if } z \neq w, \\ 0 & \text { if } z=w .\end{array}\right.$
(f) $X=\mathbb{C}$ and for all $z, w \in \mathbb{C}, d(z, w)= \begin{cases}|z-w| & \text { if } \frac{z}{|z|}=\frac{w}{|w|}, \\ |z|+|w| & \text { otherwise. }\end{cases}$
(g) $X=\mathbb{C}$ and $d(z, w)=\frac{2|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}}$ for all $z, w \in \mathbb{C}$.
3. Examine whether $\|\cdot\|$ is a norm on \mathbb{R}^{2}, where for each $(x, y) \in \mathbb{R}^{2}$,
(a) $\|(x, y)\|=(\sqrt{|x|}+\sqrt{|y|})^{2}$.
(b) $\|(x, y)\|=\sqrt{\frac{x^{2}}{9}+\frac{y^{2}}{4}}$.
4. Examine whether $\|\cdot\|$ is a norm on $C[0,1]$, where for each $f \in C[0,1]$,
(a) $\|f\|=\min \left\{\|f\|_{\infty}, 2\|f\|_{1}\right\}$.
(b) $\|f\|=\sup \{x|f(x)|: x \in[0,1]\}$.
5. If A and B are open sets in \mathbb{R} with the usual metric, then show that $A \times B$ is an open set in \mathbb{R}^{2} with the usual (Euclidean) metric.
6. If A is a nonempty bounded subset of a metric space, then show that $\operatorname{diam}(\bar{A})=\operatorname{diam}(A)$.
7. If $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, then show that $\{m+n \alpha: m, n \in \mathbb{Z}\}$ is a dense set in \mathbb{R} with the usual metric.
8. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be Cauchy sequences in a metric space (X, d). Show that the sequence $\left(d\left(x_{n}, y_{n}\right)\right)$ is convergent.
9. Examine whether the following metric spaces are complete.
(a) (\mathbb{R}, d), where $d(x, y)=\left|e^{x}-e^{y}\right|$ for all $x, y \in \mathbb{R}$
(b) $((-1,1), d)$, where $d(x, y)=\left|\tan \frac{\pi x}{2}-\tan \frac{\pi y}{2}\right|$ for all $x, y \in(-1,1)$
10. Let X, Y be metric spaces and let $f: X \rightarrow Y$. Show that f is continuous iff $f^{-1}\left(B^{0}\right) \subset$ $\left(f^{-1}(B)\right)^{0}$ for all $B \subset Y$.
Also, show that the continuity of f need not give the equality in the above inclusion for some
$B \subset Y$.
11. Let E be a nonempty bounded subset of \mathbb{R}. If $f: E \rightarrow \mathbb{R}$ is uniformly continuous, then show that f is bounded on E.
12. Let $\left(X, d_{1}\right)$ be a metric space and let $\lambda>0$. Consider the metrics d_{2}, d_{3} and d_{4} on X defined by $d_{2}(x, y)=\lambda d_{1}(x, y), d_{3}(x, y)=\min \left\{1, d_{1}(x, y)\right\}$ and $d_{4}(x, y)=\frac{d_{1}(x, y)}{1+d_{1}(x, y)}$ for all $x, y \in X$.
(a) If $\left(X, d_{i}\right)$ is a complete metric space for some $i \in\{1,2,3,4\}$, then show that $\left(X, d_{j}\right)$ is a complete metric space for each $j \in\{1,2,3,4\}$.
(b) If G is an open set in $\left(X, d_{i}\right)$ for some $i \in\{1,2,3,4\}$, then show that G is open in $\left(X, d_{j}\right)$ for each $j \in\{1,2,3,4\}$.
(From (b), it follows that $\left(X, d_{i}\right)$ is compact for some $i \in\{1,2,3,4\}$ iff $\left(X, d_{j}\right)$ is compact for each $j \in\{1,2,3,4\}$.)
13. Let d be the usual metric on $\mathbb{R} \backslash \mathbb{Q}$. Show that there exists a metric ρ on $\mathbb{R} \backslash \mathbb{Q}$ such that $(\mathbb{R} \backslash \mathbb{Q}, \rho)$ is a complete metric space and for every $A \subset \mathbb{R} \backslash \mathbb{Q}, A$ is open in $(\mathbb{R} \backslash \mathbb{Q}, \rho)$ iff A is open in $(\mathbb{R} \backslash \mathbb{Q}, d)$.
14. Let d be the usual metric on \mathbb{Q}. Does there exist a metric ρ on \mathbb{Q} such that (\mathbb{Q}, ρ) is a complete metric space and for every $A \subset \mathbb{Q}, A$ is open in (\mathbb{Q}, ρ) iff A is open in (\mathbb{Q}, d).
15. Let $\left\{K_{i}: i \in I\right\}$ be a nonempty class of compact sets in a metric space X. Show that $\bigcap_{i \in I} K_{i}$ is a compact set in X and if I is finite, then $\bigcup_{i \in I} K_{i}$ is also a compact set in X.
Show also that if I is infinite, then $\bigcup_{i \in I} K_{i}$ need not be a compact set in X.
