MA 541 (Real Analysis)

Assingment 3B

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) It is possible to define a metric d on \mathbb{R}^2 such that in (\mathbb{R}^2, d) , the sequence $\{(\frac{1}{n}, 0)\}$ converges but the sequence $\{(\frac{1}{n}, \frac{1}{n})\}$ does not converge.
 - (b) There exists a metric space having exactly 36 open sets.
- 2. Examine whether d is a metric on X, where
 - (a) $X = \mathbb{R}$ and $d(x, y) = \min\{\sqrt{|x y|}, |x y|^2\}$ for all $x, y \in \mathbb{R}$.
 - (b) $X = \mathbb{R}$ and for all $x, y \in \mathbb{R}$, $d(x, y) = \begin{cases} 1 + |x y| & \text{if exactly one of } x \text{ and } y \text{ is positive,} \\ |x y| & \text{otherwise.} \end{cases}$
 - (c) $X = \mathbb{R}^2$ and $d(x, y) = (|x_1 y_1| + |x_2 y_2|^{\frac{1}{2}})^{\frac{1}{2}}$ for all $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.
 - (d) $X = \mathbb{R}^n$ and $d(x, y) = [(x_1 y_1)^2 + \frac{1}{2}(x_2 y_2)^2 + \dots + \frac{1}{n}(x_n y_n)^2]^{\frac{1}{2}}$ for all $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

(e)
$$X = \mathbb{C}$$
 and for all $z, w \in \mathbb{C}$, $d(z, w) = \begin{cases} \min\{|z| + |w|, |z - 1| + |w - 1| & \text{if } z \neq w, \\ 0 & \text{if } z = w. \end{cases}$

(f)
$$X = \mathbb{C}$$
 and for all $z, w \in \mathbb{C}$, $d(z, w) = \begin{cases} |z - w| & \text{if } \frac{z}{|z|} = \frac{w}{|w|}, \\ |z| + |w| & \text{otherwise.} \end{cases}$
(g) $X = \mathbb{C}$ and $d(z, w) = \frac{2|z-w|}{|w|}$ for all $z, w \in \mathbb{C}$

(g)
$$X = \mathbb{C}$$
 and $d(z, w) = \frac{2|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}$ for all $z, w \in \mathbb{C}$.

- 3. Examine whether $\|\cdot\|$ is a norm on \mathbb{R}^2 , where for each $(x, y) \in \mathbb{R}^2$, (a) $\|(x, y)\| = (\sqrt{|x|} + \sqrt{|y|})^2$. (b) $\|(x, y)\| = \sqrt{\frac{x^2}{9} + \frac{y^2}{4}}$.
- 4. Examine whether $\|\cdot\|$ is a norm on C[0,1], where for each $f \in C[0,1]$, (a) $\|f\| = \min\{\|f\|_{\infty}, 2\|f\|_1\}$. (b) $\|f\| = \sup\{x|f(x)| : x \in [0,1]\}$.
- 5. If A and B are open sets in \mathbb{R} with the usual metric, then show that $A \times B$ is an open set in \mathbb{R}^2 with the usual (Euclidean) metric.
- 6. If A is a nonempty bounded subset of a metric space, then show that $\operatorname{diam}(\overline{A}) = \operatorname{diam}(A)$.
- 7. If $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, then show that $\{m + n\alpha : m, n \in \mathbb{Z}\}$ is a dense set in \mathbb{R} with the usual metric.
- 8. Let (x_n) and (y_n) be Cauchy sequences in a metric space (X, d). Show that the sequence $(d(x_n, y_n))$ is convergent.
- 9. Examine whether the following metric spaces are complete.
 (a) (ℝ, d), where d(x, y) = |e^x e^y| for all x, y ∈ ℝ
 (b) ((-1, 1), d), where d(x, y) = |tan πx/2 tan πy/2| for all x, y ∈ (-1, 1)
- 10. Let X, Y be metric spaces and let $f : X \to Y$. Show that f is continuous iff $f^{-1}(B^0) \subset (f^{-1}(B))^0$ for all $B \subset Y$.

Also, show that the continuity of f need not give the equality in the above inclusion for some

 $B \subset Y.$

- 11. Let E be a nonempty bounded subset of \mathbb{R} . If $f : E \to \mathbb{R}$ is uniformly continuous, then show that f is bounded on E.
- 12. Let (X, d_1) be a metric space and let $\lambda > 0$. Consider the metrics d_2, d_3 and d_4 on X defined by $d_2(x, y) = \lambda d_1(x, y), d_3(x, y) = \min\{1, d_1(x, y)\}$ and $d_4(x, y) = \frac{d_1(x, y)}{1 + d_1(x, y)}$ for all $x, y \in X$.
 - (a) If (X, d_i) is a complete metric space for some $i \in \{1, 2, 3, 4\}$, then show that (X, d_j) is a complete metric space for each $j \in \{1, 2, 3, 4\}$.
 - (b) If G is an open set in (X, d_i) for some $i \in \{1, 2, 3, 4\}$, then show that G is open in (X, d_j) for each $j \in \{1, 2, 3, 4\}$.

(From (b), it follows that (X, d_i) is compact for some $i \in \{1, 2, 3, 4\}$ iff (X, d_j) is compact for each $j \in \{1, 2, 3, 4\}$.)

- 13. Let d be the usual metric on $\mathbb{R} \setminus \mathbb{Q}$. Show that there exists a metric ρ on $\mathbb{R} \setminus \mathbb{Q}$ such that $(\mathbb{R} \setminus \mathbb{Q}, \rho)$ is a complete metric space and for every $A \subset \mathbb{R} \setminus \mathbb{Q}$, A is open in $(\mathbb{R} \setminus \mathbb{Q}, \rho)$ iff A is open in $(\mathbb{R} \setminus \mathbb{Q}, d)$.
- 14. Let d be the usual metric on \mathbb{Q} . Does there exist a metric ρ on \mathbb{Q} such that (\mathbb{Q}, ρ) is a complete metric space and for every $A \subset \mathbb{Q}$, A is open in (\mathbb{Q}, ρ) iff A is open in (\mathbb{Q}, d) .
- 15. Let $\{K_i : i \in I\}$ be a nonempty class of compact sets in a metric space X. Show that $\bigcap_{i \in I} K_i$ is a compact set in X and if I is finite, then $\bigcup_{i \in I} K_i$ is also a compact set in X. Show also that if I is infinite, then $\bigcup_{i \in I} K_i$ need not be a compact set in X.