Assignment 3A

- 1. Examine whether d is a metric on X, where
 - (a) $X = \mathbb{R}$ and $d(x, y) = |x y|^p$ for all $x, y \in \mathbb{R}$ (0 .
 - (b) X = The class of all finite subsets of a nonempty set and d(A, B) = The number of elements of the set $A \triangle B$ for all $A, B \in X$.
- 2. Let A be a closed set in a metric space X and $x \in X \setminus A$. Show that there exist disjoint open sets G and H in X such that $x \in G$ and $A \subset H$.
- 3. Let A and B be disjoint closed sets in a metric space X. Show that there exist disjoint open sets G and H in X such that $A \subset G$ and $B \subset H$.
- 4. Let X be a metric space. Show that(a) every closed set in X is a countable intersection of open sets in X.
 - (b) every open set in X is a countable union of closed sets in X.
- 5. If A is a subset of a metric space X, then show that $(X \setminus A)^0 = X \setminus \overline{A}$. (Other similar 'commutative relations are true for closure, interior and complement. For example, $X \setminus A^0 = \overline{X \setminus A}$.)
- Let F be a closed set in a metric space X. Prove that F is nowhere dense in X iff X \ F is dense in X.
 Is this result true for an arbitrary subset F of X? Justify.
- 7. Examine whether the following metric spaces are complete. (a) (\mathbb{R}, d) , where $d(x, y) = |\frac{x}{1+|x|} - \frac{y}{1+|y|}|$ for all $x, y \in \mathbb{R}$ (b) ([0, 1), d), where $d(x, y) = |\frac{x}{1-x} - \frac{y}{1-y}|$ for all $x, y \in [0, 1)$
- 8. Let X, Y be metric spaces and let $f, g : X \to Y$ be continuous. If A is a dense set in X such that f(a) = g(a) for all $a \in A$, then show that f(x) = g(x) for all $x \in X$.
- 9. Let A and B be disjoint closed sets in a metric space X. Show that there exists a continuous function $f: X \to \mathbb{R}$ such that f(x) = 1 for all $x \in A$ and f(x) = 0 for all $x \in B$.
- 10. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a contraction and $g(\mathbf{x}) = \mathbf{x} f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$. Show that $g : \mathbb{R}^n \to \mathbb{R}^n$ is one-one and onto. Also, show that both g and $g^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ are continuous.
- 11. Let (X, d) be a complete metric space and $f : X \to X$ be such that $f^m : X \to X$ is a contraction for some $m \in \mathbb{N}$. Show that f has a unique fixed point in X.
- 12. Let A and B be nonempty subsets of a metric space X.
 - (a) If A and B are closed in X and $A \cap B = \emptyset$, then is it necessary that d(A, B) > 0? Justify.
 - (b) If A is compact in X and B is closed in X, then show that there exists $a \in A$ such that d(A, B) = d(a, B).

- (c) If A and B are compact in X, then show that there exist $a \in A$ and $b \in B$ such that d(A, B) = d(a, b).
- 13. Let (X, d) be a compact metric space and let $f : X \to X$ be such that d(f(x), f(y)) = d(x, y) for all $x, y \in X$. Prove that $f : X \to X$ is onto. Show also that the compactness of (X, d) is, in general, necessary in the above result.
- 14. Let d be the usual metric on (0,1). Show that there exists a metric ρ on (0,1) such that $((0,1),\rho)$ is a complete metric space and for every $A \subset (0,1)$, A is open in $((0,1),\rho)$ iff A is open in ((0,1),d).
- 15. Let d be the usual metric on [0, 1]. Does there exist a metric ρ on [0, 1] such that $([0, 1], \rho)$ is a complete metric space and for every $A \subset [0, 1]$, A is open in $([0, 1], \rho)$ iff A is open in ([0, 1], d)? Justify.
- 16. Let $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Show that there cannot exist a sequence (f_n) of real-valued continuous functions on \mathbb{R} such that $f_n \to f$ pointwise on \mathbb{R} .