MA 541 (Real Analysis)

Assignment 3A

1. Examine whether d is a metric on X, where
(a) $X=\mathbb{R}$ and $d(x, y)=|x-y|^{p}$ for all $x, y \in \mathbb{R}(0<p<1)$.
(b) $X=$ The class of all finite subsets of a nonempty set and $d(A, B)=$ The number of elements of the set $A \triangle B$ for all $A, B \in X$.
2. Let A be a closed set in a metric space X and $x \in X \backslash A$. Show that there exist disjoint open sets G and H in X such that $x \in G$ and $A \subset H$.
3. Let A and B be disjoint closed sets in a metric space X. Show that there exist disjoint open sets G and H in X such that $A \subset G$ and $B \subset H$.
4. Let X be a metric space. Show that
(a) every closed set in X is a countable intersection of open sets in X.
(b) every open set in X is a countable union of closed sets in X.
5. If A is a subset of a metric space X, then show that $(X \backslash A)^{0}=X \backslash \bar{A}$.
(Other similar 'commutative relations are true for closure, interior and complement. For example, $X \backslash A^{0}=\overline{X \backslash A}$.)
6. Let F be a closed set in a metric space X. Prove that F is nowhere dense in X iff $X \backslash F$ is dense in X.
Is this result true for an arbitrary subset F of X ? Justify.
7. Examine whether the following metric spaces are complete.
(a) (\mathbb{R}, d), where $d(x, y)=\left|\frac{x}{1+|x|}-\frac{y}{1+|y|}\right|$ for all $x, y \in \mathbb{R}$
(b) $([0,1), d)$, where $d(x, y)=\left|\frac{x}{1-x}-\frac{y}{1-y}\right|$ for all $x, y \in[0,1)$
8. Let X, Y be metric spaces and let $f, g: X \rightarrow Y$ be continuous. If A is a dense set in X such that $f(a)=g(a)$ for all $a \in A$, then show that $f(x)=g(x)$ for all $x \in X$.
9. Let A and B be disjoint closed sets in a metric space X. Show that there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $f(x)=1$ for all $x \in A$ and $f(x)=0$ for all $x \in B$.
10. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a contraction and $g(\mathbf{x})=\mathbf{x}-f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Show that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-one and onto. Also, show that both g and $g^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous.
11. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be such that $f^{m}: X \rightarrow X$ is a contraction for some $m \in \mathbb{N}$. Show that f has a unique fixed point in X.
12. Let A and B be nonempty subsets of a metric space X.
(a) If A and B are closed in X and $A \cap B=\emptyset$, then is it necessary that $d(A, B)>0$? Justify.
(b) If A is compact in X and B is closed in X, then show that there exists $a \in A$ such that $d(A, B)=d(a, B)$.
(c) If A and B are compact in X, then show that there exist $a \in A$ and $b \in B$ such that $d(A, B)=d(a, b)$.
13. Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be such that $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$. Prove that $f: X \rightarrow X$ is onto.
Show also that the compactness of (X, d) is, in general, necessary in the above result.
14. Let d be the usual metric on $(0,1)$. Show that there exists a metric ρ on $(0,1)$ such that $((0,1), \rho)$ is a complete metric space and for every $A \subset(0,1), A$ is open in $((0,1), \rho)$ iff A is open in $((0,1), d)$.
15. Let d be the usual metric on $[0,1]$. Does there exist a metric ρ on $[0,1]$ such that $([0,1], \rho)$ is a complete metric space and for every $A \subset[0,1], A$ is open in ($[0,1], \rho$) iff A is open in ($[0,1], d$)? Justify.
16. Let $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$

Show that there cannot exist a sequence $\left(f_{n}\right)$ of real-valued continuous functions on \mathbb{R} such that $f_{n} \rightarrow f$ pointwise on \mathbb{R}.

