MA 541 (Real Analysis)

Assignment - 2B

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and Ω is a bounded subset of \mathbb{R}^{2}, then $f(\Omega)$ must be a bounded subset of \mathbb{R}.
(b) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous such that all the directional derivatives of f at $(0,0)$ exist (in \mathbb{R}), then f must be differentiable at $(0,0)$.
(c) There exists a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is differentiable only at $(1,0)$.
(d) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is differentiable with $f(0,0)=(1,1)$ and $\left[f^{\prime}(0,0)\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then there cannot exist a differentiable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $g(1,1)=(0,0)$ and $(f \circ g)(x, y)=$ (y, x) for all $(x, y) \in \mathbb{R}^{2}$.
(e) A differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ cannot have a differentiable inverse $f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $\operatorname{det}\left[f^{\prime}(x, y)\right]=0$ for some $(x, y) \in \mathbb{R}^{2}$.
(f) It is possible to define a metric d on \mathbb{R}^{2} such that in $\left(\mathbb{R}^{2}, d\right)$, the sequence $\left\{\left(\frac{1}{n}, 0\right)\right\}$ converges but the sequence $\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\}$ does not converge.
2. Let $\left(\mathbf{x}_{k}\right)$ be a sequence in \mathbb{R}^{n}. Show that (\mathbf{x}_{k}) converges in \mathbb{R}^{n} iff for each $\mathbf{x} \in \mathbb{R}^{n}$, the sequence $\left\{\left\langle\mathbf{x}_{k}, \mathbf{x}\right\rangle\right\}$ converges in \mathbb{R}.
3. Examine whether the following limits exist (in \mathbb{R}) and find their values if they exist (in \mathbb{R}).
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{2}}{x^{2}+y}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2} y^{2}+1}-1}{x^{2}+y^{2}}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y^{2}+y^{6}}{x^{6}+y^{4}}$
(e) $\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos \left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$
4. Examine the continuity of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at $(0,0)$, where for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left\{\begin{array}{cl}x y & \text { if } x y \geq 0, \\ -x y & \text { if } x y<0 .\end{array}\right.$
(b) $f(x, y)= \begin{cases}1 & \text { if } x>0 \text { and } 0<y<x^{2}, \\ 0 & \text { otherwise. }\end{cases}$
5. Determine all the points of \mathbb{R}^{2} where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, if for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{x-y} & \text { if } x \neq y, \\ 0 & \text { if } x=y .\end{array}\right.$
(b) $f(x, y)=\left\{\begin{array}{cl}x y & \text { if } x y \in \mathbb{Q}, \\ -x y & \text { if } x y \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous and $f(x, y)=x^{2}+y^{2}$ for all $x \in \mathbb{Q}, y \in \mathbb{R} \backslash \mathbb{Q}$. Determine $f(\sqrt{2}, 2)$.
7. Let α, β be non-negative real numbers and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cc}\frac{|x|^{\alpha}|y|^{\mid}}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
Show that f is continuous iff $\alpha+\beta>1$.
8. Let Ω be an open subset of \mathbb{R}^{n} and $f: \Omega \rightarrow \mathbb{R}^{m}$ and $g: \Omega \rightarrow \mathbb{R}^{m}$ be continuous at $\mathbf{x}_{0} \in \Omega$. If for each $\varepsilon>0$, there exist $\mathbf{x}, \mathbf{y} \in B_{\varepsilon}\left(\mathbf{x}_{0}\right)$ such that $f(\mathbf{x})=g(\mathbf{y})$, then show that $f\left(\mathbf{x}_{0}\right)=g\left(\mathbf{x}_{0}\right)$.
9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous and $\lim _{\|\mathbf{x}\|_{2} \rightarrow \infty} f(\mathbf{x})=1$. Show that f is bounded on \mathbb{R}^{n}.
10. Examine the differentiability of f at $\mathbf{0}$, where
(a) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $|f(\mathbf{x})| \leq\|\mathbf{x}\|_{2}^{2}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$.
(c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=||x|-|y||-|x|-|y|$ for all $(x, y) \in \mathbb{R}^{2}$.
(d) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\frac{y}{|y|} \sqrt{x^{2}+y^{2}} & \text { if } y \neq 0, \\ 0 & \text { if } y=0 .\end{array}\right.$
(e) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(f) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)= \begin{cases}1 & \text { if } y<x^{2}<2 y, \\ 0 & \text { otherwise. }\end{cases}$
(g) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\frac{\sin \left(x^{2} y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(h) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\left(\sin ^{2} x+x^{2} \sin \frac{1}{x}, y^{2}\right) & \text { if } x \neq 0, \\ \left(0, y^{2}\right) & \text { if } x=0 .\end{array}\right.$
(i) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $f(\mathbf{x})=\|\mathbf{x}\|_{2} \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
11. Determine all the points of \mathbb{R}^{2} where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable, if for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left\{\begin{array}{cl}x^{2}+y^{2} & \text { if both } x, y \in \mathbb{Q}, \\ 0 & \text { otherwise. }\end{array}\right.$
(b) $f(x, y)=\left\{\begin{array}{cl}x^{4 / 3} \sin \left(\frac{y}{x}\right) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
12. Let Ω be a nonempty open subset of \mathbb{R}^{n} and $g: \Omega \rightarrow \mathbb{R}^{n}$ be continuous at $\mathbf{x}_{0} \in \Omega$. If $f: \Omega \rightarrow \mathbb{R}$ is such that $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)=\left\langle g(\mathbf{x}), \mathbf{x}-\mathbf{x}_{0}\right\rangle$ for all $\mathbf{x} \in \Omega$, then show that f is differentiable at x_{0}.
13. Let Ω be a nonempty open subset of \mathbb{R}^{n}. Let $f: \Omega \rightarrow \mathbb{R}$ be differentiable at $\mathbf{x}_{0} \in \Omega, f\left(\mathbf{x}_{0}\right)=0$ and $g: \Omega \rightarrow \mathbb{R}$ be continuous at \mathbf{x}_{0}. Prove that $f g: \Omega \rightarrow \mathbb{R}$, defined by $(f g)(\mathbf{x})=f(\mathbf{x}) g(\mathbf{x})$ for all $\mathbf{x} \in \Omega$, is differentiable at \mathbf{x}_{0}.
14. Find all $\mathbf{v} \in \mathbb{R}^{2}$ for which the directional derivative $f_{\mathbf{v}}^{\prime}(0,0)$ exists, where for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(b) $f(x, y)= \begin{cases}1 & \text { if } y<x^{2}<2 y, \\ 0 & \text { otherwise } .\end{cases}$
(c) $f(x, y)=||x|-|y||-|x|-|y|$.
15. Prove that a differentiable function $f: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}^{m}$ is homogeneous of degree $\alpha \in \mathbb{R}$ (i.e. $f(t \mathbf{x})=t^{\alpha} f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and for all $\left.t>0\right)$ iff $f^{\prime}(\mathbf{x})(\mathbf{x})=\alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$.
16. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuously differentiable such that $f_{x}(a, b)=f_{y}(a, b)$ for all $(a, b) \in \mathbb{R}^{2}$ and $f(a, 0)>0$ for all $a \in \mathbb{R}$. Show that $f(a, b)>0$ for all $(a, b) \in \mathbb{R}^{2}$.
17. Let Ω be an open subset of \mathbb{R}^{n} such that $\mathbf{a}, \mathbf{b} \in \Omega$ and $S=\{(1-t) \mathbf{a}+t \mathbf{b}: t \in[0,1]\} \subset \Omega$. If $f: \Omega \rightarrow \mathbb{R}^{m}$ is differentiable at each point of S, then show that there exists a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $f(\mathbf{b})-f(\mathbf{a})=L(\mathbf{b}-\mathbf{a})$.
18. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be differentiable such that $\left\langle f^{\prime}(\mathbf{x})(\mathbf{y}), \mathbf{y}\right\rangle \geq\|\mathbf{y}\|_{2}^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Show that $\|f(\mathbf{x})-f(\mathbf{y})\|_{2} \geq\|\mathbf{x}-\mathbf{y}\|_{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
19. Determine all the points of \mathbb{R}^{2} where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is locally invertible, if for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left(x^{2}+y^{2}, x y\right)$.
(b) $f(x, y)=(\cos x+\cos y, \sin x+\sin y)$.
20. Determine all the points of \mathbb{R}^{3} where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is locally invertible, if for all $(x, y, z) \in \mathbb{R}^{3}$,
(a) $f(x, y, z)=(x+y, x y+z, y+z)$.
(b) $f(x, y, z)=(x-x y, x y-x y z, x y z)$.
21. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\}$ and $\Omega^{\prime}=\mathbb{R}^{2} \backslash\left\{(x, 0) \in \mathbb{R}^{2}: x \leq 0\right\}$. Show that the function $f: \Omega \rightarrow \Omega^{\prime}$, defined by $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ for all $(x, y) \in \Omega$, is differentiable and invertible. Is $f^{-1}: \Omega^{\prime} \rightarrow \Omega$ differentiable? Justify.
22. Let $f(x, y)=\left(3 x-y^{2}, 2 x+y, x y+y^{3}\right)$ and $g(x, y)=\left(2 y e^{2 x}, x e^{y}\right)$ for all $(x, y) \in \mathbb{R}^{2}$. Examine whether $\left(f \circ g^{-1}\right)^{\prime}(2,0)$ exists (with a meaningful interpretation of $\left.g^{-1}\right)$ and find $\left(f \circ g^{-1}\right)^{\prime}(2,0)$ if it exists.
23. Show that there are points $(x, y, z, u, v, w) \in \mathbb{R}^{6}$ which satisfy the equations

$$
\begin{aligned}
& x^{2}+u+e^{v}=0, \\
& y^{2}+v+e^{w}=0, \\
& z^{2}+w+e^{u}=0 .
\end{aligned}
$$

Prove that in a neighbourhood of such a point there exist unique differentiable solutions $u=\varphi_{1}(x, y, z), v=\varphi_{2}(x, y, z), w=\varphi_{3}(x, y, z)$. If $\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$, find $\varphi^{\prime}(x, y, z)$.
24. Show that the system of equations

$$
\begin{aligned}
x^{2}+y^{2}-u^{2}-v & =0, \\
x^{2}+2 y^{2}+3 u^{2}+4 v^{2} & =1,
\end{aligned}
$$

defines (u, v) implicitly as a differentiable function of (x, y) locally around the point $(x, y, u, v)=\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$ but does not define (x, y) implicitly as a differentiable function of (u, v) locally around the same point.
25. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y(x-y)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$ Examine whether $f_{x y}(0,0)=f_{y x}(0,0)$.
26. Find the 3rd order Taylor polynomial of $f(x, y, z)=x^{2} y+z$ about the point $(1,2,1)$.
27. Find the 4th order Taylor polynomial of $g(x, y)=e^{x-2 y} /\left(1+x^{2}-y\right)$ about the point $(0,0)$.

