MA 541 (Real Analysis)

Assignment - 2B

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous and Ω is a bounded subset of \mathbb{R}^2 , then $f(\Omega)$ must be a bounded subset of \mathbb{R} .
 - (b) If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous such that all the directional derivatives of f at (0,0) exist (in \mathbb{R}), then f must be differentiable at (0,0).
 - (c) There exists a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is differentiable only at (1, 0).
 - (d) If $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable with f(0,0) = (1,1) and $[f'(0,0)] = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then there cannot exist a differentiable function $g : \mathbb{R}^2 \to \mathbb{R}^2$ with g(1,1) = (0,0) and $(f \circ g)(x,y) = (y,x)$ for all $(x,y) \in \mathbb{R}^2$.
 - (e) A differentiable function $f : \mathbb{R}^2 \to \mathbb{R}^2$ cannot have a differentiable inverse $f^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ if $\det[f'(x,y)] = 0$ for some $(x,y) \in \mathbb{R}^2$.
 - (f) It is possible to define a metric d on \mathbb{R}^2 such that in (\mathbb{R}^2, d) , the sequence $\{(\frac{1}{n}, 0)\}$ converges but the sequence $\{(\frac{1}{n}, \frac{1}{n})\}$ does not converge.
- 2. Let (\mathbf{x}_k) be a sequence in \mathbb{R}^n . Show that (\mathbf{x}_k) converges in \mathbb{R}^n iff for each $\mathbf{x} \in \mathbb{R}^n$, the sequence $\{\langle \mathbf{x}_k, \mathbf{x} \rangle\}$ converges in \mathbb{R} .
- 3. Examine whether the following limits exist (in \mathbb{R}) and find their values if they exist (in \mathbb{R}).

- 4. Examine the continuity of $f : \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$, (a) $f(x,y) = \begin{cases} xy & \text{if } xy \ge 0, \\ -xy & \text{if } xy < 0. \end{cases}$ (b) $f(x,y) = \begin{cases} 1 & \text{if } x > 0 \text{ and } 0 < y < x^2, \\ 0 & \text{otherwise.} \end{cases}$
- 5. Determine all the points of \mathbb{R}^2 where $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous, if for all $(x, y) \in \mathbb{R}^2$, (a) $f(x, y) = \begin{cases} \frac{xy}{x-y} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$ (b) $f(x, y) = \begin{cases} xy & \text{if } xy \in \mathbb{Q}, \\ -xy & \text{if } xy \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuous and $f(x, y) = x^2 + y^2$ for all $x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}$. Determine $f(\sqrt{2}, 2)$.
- 7. Let α , β be non-negative real numbers and let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Show that f is continuous iff $\alpha + \beta > 1$.
- 8. Let Ω be an open subset of \mathbb{R}^n and $f: \Omega \to \mathbb{R}^m$ and $g: \Omega \to \mathbb{R}^m$ be continuous at $\mathbf{x}_0 \in \Omega$. If for each $\varepsilon > 0$, there exist $\mathbf{x}, \mathbf{y} \in B_{\varepsilon}(\mathbf{x}_0)$ such that $f(\mathbf{x}) = g(\mathbf{y})$, then show that $f(\mathbf{x}_0) = g(\mathbf{x}_0)$.
- 9. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and $\lim_{\|\mathbf{x}\|_2 \to \infty} f(\mathbf{x}) = 1$. Show that f is bounded on \mathbb{R}^n .

- 10. Examine the differentiability of f at $\mathbf{0}$, where
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ satisfies $|f(\mathbf{x})| \leq ||\mathbf{x}||_2^2$ for all $\mathbf{x} \in \mathbb{R}^n$. (b) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = \sqrt{|xy|}$ for all $(x, y) \in \mathbb{R}^2$. (c) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by f(x, y) = ||x| - |y|| - |x| - |y| for all $(x, y) \in \mathbb{R}^2$. (d) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = \begin{cases} \frac{y}{|y|}\sqrt{x^2 + y^2} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$ (e) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$ (f) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$ (g) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = \begin{cases} \frac{\sin(x^2y^2)}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$ (h) $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $f(x, y) = \begin{cases} \frac{\sin^2 x^2 + x^2 \sin \frac{1}{x}, y^2}{x^2 + y^2} & \text{if } x \neq 0, \\ (0, y^2) & \text{if } x = 0. \end{cases}$
 - (i) $f : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $f(\mathbf{x}) = \|\mathbf{x}\|_2 \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 11. Determine all the points of \mathbb{R}^2 where $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable, if for all $(x, y) \in \mathbb{R}^2$, (a) $f(x, y) = \begin{cases} x^2 + y^2 & \text{if both } x, y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ (b) $f(x, y) = \begin{cases} x^{4/3} \sin(\frac{y}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
- 12. Let Ω be a nonempty open subset of \mathbb{R}^n and $g: \Omega \to \mathbb{R}^n$ be continuous at $\mathbf{x}_0 \in \Omega$. If $f: \Omega \to \mathbb{R}$ is such that $f(\mathbf{x}) f(\mathbf{x}_0) = \langle g(\mathbf{x}), \mathbf{x} \mathbf{x}_0 \rangle$ for all $\mathbf{x} \in \Omega$, then show that f is differentiable at \mathbf{x}_0 .
- 13. Let Ω be a nonempty open subset of \mathbb{R}^n . Let $f : \Omega \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \Omega$, $f(\mathbf{x}_0) = 0$ and $g : \Omega \to \mathbb{R}$ be continuous at \mathbf{x}_0 . Prove that $fg : \Omega \to \mathbb{R}$, defined by $(fg)(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ for all $\mathbf{x} \in \Omega$, is differentiable at \mathbf{x}_0 .
- 14. Find all $\mathbf{v} \in \mathbb{R}^2$ for which the directional derivative $f'_{\mathbf{v}}(0,0)$ exists, where for all $(x,y) \in \mathbb{R}^2$, (a) $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (b) $f(x,y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$ (c) f(x,y) = ||x| - |y|| - |x| - |y|.
- 15. Prove that a differentiable function $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}^m$ is homogeneous of degree $\alpha \in \mathbb{R}$ (*i.e.* $f(t\mathbf{x}) = t^{\alpha}f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and for all t > 0) iff $f'(\mathbf{x})(\mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- 16. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable such that $f_x(a,b) = f_y(a,b)$ for all $(a,b) \in \mathbb{R}^2$ and f(a,0) > 0 for all $a \in \mathbb{R}$. Show that f(a,b) > 0 for all $(a,b) \in \mathbb{R}^2$.
- 17. Let Ω be an open subset of \mathbb{R}^n such that $\mathbf{a}, \mathbf{b} \in \Omega$ and $S = \{(1-t)\mathbf{a} + t\mathbf{b} : t \in [0,1]\} \subset \Omega$. If $f : \Omega \to \mathbb{R}^m$ is differentiable at each point of S, then show that there exists a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(\mathbf{b}) - f(\mathbf{a}) = L(\mathbf{b} - \mathbf{a})$.
- 18. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable such that $\langle f'(\mathbf{x})(\mathbf{y}), \mathbf{y} \rangle \ge \|\mathbf{y}\|_2^2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Show that $\|f(\mathbf{x}) f(\mathbf{y})\|_2 \ge \|\mathbf{x} \mathbf{y}\|_2$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

- 19. Determine all the points of \mathbb{R}^2 where $f : \mathbb{R}^2 \to \mathbb{R}^2$ is locally invertible, if for all $(x, y) \in \mathbb{R}^2$, (a) $f(x, y) = (x^2 + y^2, xy)$. (b) $f(x, y) = (\cos x + \cos y, \sin x + \sin y)$.
- 20. Determine all the points of \mathbb{R}^3 where $f : \mathbb{R}^3 \to \mathbb{R}^3$ is locally invertible, if for all $(x, y, z) \in \mathbb{R}^3$, (a) f(x, y, z) = (x + y, xy + z, y + z). (b) f(x, y, z) = (x - xy, xy - xyz, xyz).
- 21. Let $\Omega = \{(x, y) \in \mathbb{R}^2 : x > 0\}$ and $\Omega' = \mathbb{R}^2 \setminus \{(x, 0) \in \mathbb{R}^2 : x \leq 0\}$. Show that the function $f : \Omega \to \Omega'$, defined by $f(x, y) = (x^2 y^2, 2xy)$ for all $(x, y) \in \Omega$, is differentiable and invertible. Is $f^{-1} : \Omega' \to \Omega$ differentiable? Justify.
- 22. Let $f(x,y) = (3x y^2, 2x + y, xy + y^3)$ and $g(x,y) = (2ye^{2x}, xe^y)$ for all $(x,y) \in \mathbb{R}^2$. Examine whether $(f \circ g^{-1})'(2,0)$ exists (with a meaningful interpretation of g^{-1}) and find $(f \circ g^{-1})'(2,0)$ if it exists.
- 23. Show that there are points $(x, y, z, u, v, w) \in \mathbb{R}^6$ which satisfy the equations

$$x^{2} + u + e^{v} = 0,$$

 $y^{2} + v + e^{w} = 0,$
 $z^{2} + w + e^{u} = 0.$

Prove that in a neighbourhood of such a point there exist unique differentiable solutions $u = \varphi_1(x, y, z), v = \varphi_2(x, y, z), w = \varphi_3(x, y, z)$. If $\varphi = (\varphi_1, \varphi_2, \varphi_3)$, find $\varphi'(x, y, z)$.

24. Show that the system of equations

$$\begin{aligned} x^2 + y^2 - u^2 - v &= 0, \\ x^2 + 2y^2 + 3u^2 + 4v^2 &= 1, \end{aligned}$$

defines (u, v) implicitly as a differentiable function of (x, y) locally around the point $(x, y, u, v) = (\frac{1}{2}, 0, \frac{1}{2}, 0)$ but does not define (x, y) implicitly as a differentiable function of (u, v) locally around the same point.

- 25. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} \frac{x^2 y(x-y)}{x^2+y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$ Examine whether $f_{xy}(0, 0) = f_{yx}(0, 0).$
- 26. Find the 3rd order Taylor polynomial of $f(x, y, z) = x^2y + z$ about the point (1, 2, 1).
- 27. Find the 4th order Taylor polynomial of $g(x, y) = e^{x-2y}/(1+x^2-y)$ about the point (0, 0).