Assignment 2A

- State TRUE or FALSE giving proper justification for each of the following statements.
 (a) A continuously differentiable function f : ℝ² → ℝ² cannot be one-one and onto if det[f'(x, y)] = 0 for some (x, y) ∈ ℝ².
- 2. Examine the differentiability of f at $\mathbf{0}$, where
 - (a) $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = \begin{cases} x & \text{if } |x| < |y|, \\ -x & \text{if } |x| \ge |y|. \end{cases}$
 - (b) $f : \mathbb{R}^n \to \mathbb{R}$ is defined by $f(\mathbf{x}) = \|\mathbf{x}\|_2$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 3. If $f(x,y) = |x| \sin(x^2 + y^2)$ for all $(x,y) \in \mathbb{R}^2$, then determine all the points of \mathbb{R}^2 where $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable.
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable and $\mathbf{y} \in \mathbb{R}^m$. If $g(\mathbf{x}) = \langle f(\mathbf{x}), \mathbf{y} \rangle$ for all $\mathbf{x} \in \mathbb{R}^n$, then show that $g : \mathbb{R}^n \to \mathbb{R}$ is differentiable.
- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable such that f(1,1) = 1, $f_x(1,1) = 2$ and $f_y(1,1) = 5$. If g(x) = f(x, f(x, x)) for all $x \in \mathbb{R}$, determine g'(1).
- 6. Let Ω be an open convex subset of \mathbb{R}^n . Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear function and $f : \Omega \to \mathbb{R}^m$ be differentiable with $f'(\mathbf{x}) = L$ for all $\mathbf{x} \in \Omega$. Show that there exists $\mathbf{v} \in \mathbb{R}^m$ such that $f(\mathbf{x}) = L(\mathbf{x}) + \mathbf{v}$ for all $\mathbf{x} \in \Omega$.
- 7. For $n \ge 2$, let $B = {\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_2 < 1}$ and $f(\mathbf{x}) = ||\mathbf{x}||_2^2 \mathbf{x}$ for all $\mathbf{x} \in B$. Show that $f : B \to B$ is differentiable and invertible but that $f^{-1} : B \to B$ is not differentiable at **0**.
- 8. Using implicit function theorem, show that in a neighbourhood of any point $(x_0, y_0, u_0, v_0) \in \mathbb{R}^4$ which satisfies the equations

$$\begin{aligned} x - e^u \cos v &= 0, \\ v - e^y \sin x &= 0, \end{aligned}$$

there exists a unique solution $(u, v) = \varphi(x, y)$ satisfying det $[\varphi'(x, y)] = v/x$.

9. Show that around the point (0, 1, 1), the equation $xy - z \log y + e^{xz} = 1$ can be solved locally as y = f(x, z) but cannot be solved locally as z = g(x, y).