MA 541 (Real Analysis)

Assignment 2A

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) A continuously differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ cannot be one-one and onto if $\operatorname{det}\left[f^{\prime}(x, y)\right]=0$ for some $(x, y) \in \mathbb{R}^{2}$.
2. Examine the differentiability of f at $\mathbf{0}$, where
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}x & \text { if }|x|<|y|, \\ -x & \text { if }|x| \geq|y| \text {. }\end{array}\right.$
(b) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $f(\mathbf{x})=\|\mathbf{x}\|_{2}$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
3. If $f(x, y)=|x| \sin \left(x^{2}+y^{2}\right)$ for all $(x, y) \in \mathbb{R}^{2}$, then determine all the points of \mathbb{R}^{2} where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable and $\mathbf{y} \in \mathbb{R}^{m}$. If $g(\mathbf{x})=\langle f(\mathbf{x}), \mathbf{y}\rangle$ for all $\mathbf{x} \in \mathbb{R}^{n}$, then show that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable such that $f(1,1)=1, f_{x}(1,1)=2$ and $f_{y}(1,1)=5$. If $g(x)=f(x, f(x, x))$ for all $x \in \mathbb{R}$, determine $g^{\prime}(1)$.
6. Let Ω be an open convex subset of \mathbb{R}^{n}. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear function and $f: \Omega \rightarrow \mathbb{R}^{m}$ be differentiable with $f^{\prime}(\mathbf{x})=L$ for all $\mathbf{x} \in \Omega$. Show that there exists $\mathbf{v} \in \mathbb{R}^{m}$ such that $f(\mathbf{x})=L(\mathbf{x})+\mathbf{v}$ for all $\mathbf{x} \in \Omega$.
7. For $n \geq 2$, let $B=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{2}<1\right\}$ and $f(\mathbf{x})=\|\mathbf{x}\|_{2}^{2} \mathbf{x}$ for all $\mathbf{x} \in B$. Show that $f: B \rightarrow B$ is differentiable and invertible but that $f^{-1}: B \rightarrow B$ is not differentiable at $\mathbf{0}$.
8. Using implicit function theorem, show that in a neighbourhood of any point $\left(x_{0}, y_{0}, u_{0}, v_{0}\right) \in \mathbb{R}^{4}$ which satisfies the equations

$$
\begin{aligned}
& x-e^{u} \cos v=0 \\
& v-e^{y} \sin x=0
\end{aligned}
$$

there exists a unique solution $(u, v)=\varphi(x, y)$ satisfying $\operatorname{det}\left[\varphi^{\prime}(x, y)\right]=v / x$.
9. Show that around the point $(0,1,1)$, the equation $x y-z \log y+e^{x z}=1$ can be solved locally as $y=f(x, z)$ but cannot be solved locally as $z=g(x, y)$.

