Assignment 1B

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If both (x_n) and (y_n) are unbounded sequences of positive real numbers, then the sequence (x_ny_n) cannot be convergent.
 - (b) A monotonic sequence (x_n) in \mathbb{R} is convergent iff the sequence (x_n^2) is convergent.
 - (c) If an increasing sequence (x_n) in \mathbb{R} has a convergent subsequence, then (x_n) must be convergent.
 - (d) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x) < 3 for all $x \in \mathbb{Q}$, then it is necessary that f(x) < 3 for all $x \in \mathbb{R}$.
 - (e) There exists a continuous function from (0, 1] onto \mathbb{R} .
 - (f) If $f : \mathbb{R} \to \mathbb{R}$ is continuous at both 2 and 4, then f must be continuous at some $c \in (2, 4)$.
 - (g) If $f: [1,2] \to \mathbb{R}$ is differentiable, then f' must be bounded on [1,2].
 - (h) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable, then for each $c \in \mathbb{R}$, there must exist $a, b \in \mathbb{R}$ with a < c < b such that f(b) f(a) = (b a)f'(c).
 - (i) The function $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x + \sin x$ for all $x \in \mathbb{R}$, is strictly increasing on \mathbb{R} .
- 2. Find sup A and $\inf A$, where (a) $A = \{\frac{m}{m+n} : m, n \in \mathbb{N}\}$ (b) $A = \{\frac{m}{|m|+n} : m \in \mathbb{Z}, n \in \mathbb{N}\}.$
- 3. Let A, B be nonempty subsets of \mathbb{R} .
 - (a) If A and B are bounded above, then show that $A + B = \{a + b : a \in A, b \in B\}$ is bounded above and that $\sup(A + B) = \sup A + \sup B$.
 - (b) If A and B are bounded below, then show that A+B is bounded below and that $\inf(A+B) = \inf A + \inf B$.
- 4. Let A be a nonempty bounded subset of \mathbb{R} and let $\alpha \in \mathbb{R}$. If $\alpha A = \{\alpha a : a \in A\}$, then show that $\sup(\alpha A) = \begin{cases} \alpha \sup A & \text{if } \alpha \ge 0, \\ \alpha \inf A & \text{if } \alpha < 0, \end{cases}$ and $\inf(\alpha A) = \begin{cases} \alpha \inf A & \text{if } \alpha \ge 0, \\ \alpha \sup A & \text{if } \alpha < 0. \end{cases}$
- 5. Let A, B be nonempty subsets of $(0, \infty)$. If A and B are bounded above, then show that $AB = \{ab : a \in A, b \in B\}$ is bounded above and that $\sup(AB) = \sup A \cdot \sup B$.
- 6. Let (x_n) be a convergent sequence in R with limit ℓ ∈ R and let α ∈ R.
 (a) If x_n > α for all n ∈ N, then show that ℓ ≥ α.
 (b) If ℓ > α, then show that there exists n₀ ∈ N such that x_n > α for all n ≥ n₀. (Note that ℓ can be equal to α in (a).)
- 7. If $x_n = (1 + \frac{1}{n})^n$ and $y_n = (1 + \frac{1}{n})^{n+1}$ for all $n \in \mathbb{N}$, then show that the sequence (x_n) is increasing and bounded above whereas the sequence (y_n) is decreasing and bounded below. (Thus both (x_n) and (y_n) are convergent.)
- 8. Let a sequence (x_n) in \mathbb{R} satisfy either of the following conditions:
 - (a) There exists $\alpha \in (0, 1)$ such that $|x_{n+1} x_n| \leq \alpha^n$ for all $n \in \mathbb{N}$.
 - (b) There exists $\alpha \in (0,1)$ such that $|x_{n+2} x_{n+1}| \leq \alpha |x_{n+1} x_n|$ for all $n \in \mathbb{N}$.

Show that (x_n) is a Cauchy sequence (and hence convergent).

- 9. Examine whether the sequences (x_n) defined as below are convergent. Also, find their limits if they are convergent.
 - (a) $x_n = (a^n + b^n + c^n)^{\frac{1}{n}}$ for all $n \in \mathbb{N}$, where a, b, c are distinct positive real numbers.
 - (b) $x_n = \frac{1}{n^2}(a_1 + \dots + a_n)$, where $a_n = n + \frac{1}{n}$ for all $n \in \mathbb{N}$.

 - (c) $x_n = \frac{1}{n^2}([\alpha] + [2\alpha] + \dots + [n\alpha]), \text{ where } \alpha \in \mathbb{R}.$ (d) $x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n+1}} \text{ for all } n \in \mathbb{N}.$ (e) $x_n = (\frac{\sin n + \cos n}{3})^n \text{ for all } n \in \mathbb{N}.$

 - (f) $x_n = \frac{n}{3} [\frac{n}{3}]$ for all $n \in \mathbb{N}$. (g) $x_n = (n^2 + 1)^{\frac{1}{8}} (n+1)^{\frac{1}{4}}$ for all $n \in \mathbb{N}$.

 - (h) $x_1 = 4$ and $x_{n+1} = 3 \frac{2}{x_n}$ for all $n \in \mathbb{N}$. (i) $x_1 = 1$ and $x_{n+1} = (\frac{n}{n+1})x_n^2$ for all $n \in \mathbb{N}$. (j) $x_1 = 0$ and $x_{n+1} = \sqrt{6+x_n}$ for all $n \in \mathbb{N}$.
 - (k) $x_1 = 1$ and $x_{n+1} = \frac{2+x_n}{1+x_n}$ for all $n \in \mathbb{N}$.
 - (1) $x_1 = a, x_2 = b$ and $x_{n+2} = \frac{1}{2}(x_n + x_{n+1})$ for all $n \in \mathbb{N}$, where $a, b \in \mathbb{R}$.
- 10. Let a > 0 and let $x_1 = 0$, $x_{n+1} = x_n^2 + a$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) is convergent iff $a \leq \frac{1}{4}$.
- 11. Let (x_n) be a sequence in \mathbb{R} such that each of the subsequences (x_{2n}) , (x_{2n-1}) and (x_{3n}) converges. Show that (x_n) is convergent.
- 12. Let (x_n) be a sequence in \mathbb{R} with $\lim_{n\to\infty} x_n = 0$. Show that there exists a subsequence (x_{n_k}) of (x_n) such that the series $\sum_{k=1}^{\infty} x_{n_k}$ is absolutely convergent.
- 13. Let (x_n) and (y_n) be bounded sequences in \mathbb{R} . Show that (a) $\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$. (b) $\liminf_{n \to \infty} (x_n + y_n) \ge \liminf_{n \to \infty} x_n + \liminf_{n \to \infty} y_n$. Give examples to show that the inequalities in (a) and (b) can be strict.

Also, show that if either (x_n) or (y_n) is convergent, then the equality holds in both (a) and (b).

- 14. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that for each $x \in \mathbb{Q}$, f(x) is an integer. If $f(\frac{1}{2}) = 2$, then find $f(\frac{1}{3})$.
- 15. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that $f(x) = f(x^2)$ for all $x \in \mathbb{R}$. Show that f is a constant function.
- 16. Let $f:(0,\infty)\to\mathbb{R}$ be continuous such that $\lim_{x\to 0+} f(x)=0$ and $\lim_{x\to\infty} f(x)=1$. Show that there exists $c \in (0, \infty)$ such that $f(c) = \frac{\sqrt{3}}{2}$.
- 17. Let $f: [0,1] \to \mathbb{R}$ and $g: [0,1] \to \mathbb{R}$ be continuous such that $\sup\{f(x) : x \in [0,1]\} =$ $\sup\{g(x): x \in [0,1]\}$. Show that there exists $c \in [0,1]$ such that f(c) = g(c).

- 18. Let $f : [a, b] \to \mathbb{R}$ be continuous. For $n \in \mathbb{N}$, let $x_1, ..., x_n \in [a, b]$ and let $\alpha_1, ..., \alpha_n$ be nonzero real numbers having same sign. Show that there exists $c \in [a, b]$ such that
 - $f(c)\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \alpha_i f(x_i).$

(In particular, this shows that if $f : [a, b] \to \mathbb{R}$ is continuous and if for $n \in \mathbb{N}, x_1, ..., x_n \in [a, b]$, then there exists $\xi \in [a, b]$ such that $f(\xi) = \frac{1}{n}(f(x_1) + \cdots + f(x_n))$.)

- 19. Let $f : [a, b] \to \mathbb{R}$ be continuous such that f(a) = f(b). Show that for each $\varepsilon > 0$, there exist distinct $x, y \in [a, b]$ such that $|x y| < \varepsilon$ and f(x) = f(y).
- 20. Let p be a non-constant polynomial of even degree with real coefficients in one real variable. Prove that exactly one of the following two statements holds.
 - (a) There exists $x_0 \in \mathbb{R}$ such that $p(x_0) \leq p(x)$ for all $x \in \mathbb{R}$.
 - (b) There exists $x_0 \in \mathbb{R}$ such that $p(x_0) \ge p(x)$ for all $x \in \mathbb{R}$.
- 21. Let $f(x) = |x^3|$ for all $x \in \mathbb{R}$. Examine the existence of f'(x), f''(x) and f'''(x), where $x \in \mathbb{R}$.
- 22. Examine whether $f : \mathbb{R} \to \mathbb{R}$, defined as below, is differentiable at 0. (a) $f(x) = \begin{cases} \frac{1}{2^{n+1}} & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$ (b) $f(x) = \begin{cases} \frac{1}{4^n} & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$
- 23. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable at x_0 and let g(x) = |f(x)| for all $x \in \mathbb{R}$. Show that $g : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 iff either $f(x_0) \neq 0$ or $f(x_0) = f'(x_0) = 0$.
- 24. Let $f : [a, b] \to \mathbb{R}$ be differentiable such that $f(x) \neq 0$ for all $x \in [a, b]$. Show that there exists $c \in (a, b)$ such that $\frac{f'(c)}{f(c)} = \frac{1}{a-c} + \frac{1}{b-c}$.
- 25. Let $f : [0,1] \to \mathbb{R}$ be differentiable such that f(0) = 0 and f(1) = 1. Show that there exist $c_1, c_2 \in [0,1]$ with $c_1 \neq c_2$ such that $f'(c_1) + f'(c_2) = 2$.
- 26. Let $f: [0,1] \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0. Show that there exists $c \in (0,1)$ such that f'(c) = f(c).
- 27. Determine all the differentiable functions $f: [0,1] \to \mathbb{R}$ satisfying the conditions (a) f(0) = 0, f(1) = 1 and $|f'(x)| \le \frac{1}{2}$ for all $x \in [0,1]$. (b) f(0) = 0, f(1) = 1 and $|f'(x)| \le 1$ for all $x \in [0,1]$.
- 28. Show that for each $a \in (0, 1)$ and for each $b \in \mathbb{R}$, the equation $a \sin x + b = x$ has a unique root in \mathbb{R} .
- 29. Show that the equation $|x^{10} 60x^9 290| = e^x$ has at least one real root.
- 30. Show that for each $n \in \mathbb{N}$, the equation $x^n + x 1 = 0$ has a unique root in [0, 1]. If for each $n \in \mathbb{N}$, x_n denotes this root, then show that the sequence (x_n) converges to 1.

- 31. Prove that for each $a \ge 0$, there exists a unique $b \ge 0$ such that $a = \int_{0}^{b} \frac{1}{(1+x^3)^{1/5}} dx$.
- 32. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Show that there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.
- 33. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists (in \mathbb{R}), where $c \in \mathbb{R}$. Show that $\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$ Give an example of an $f : \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which f''(c) does not exist (in \mathbb{R}) but the above limit exists (in \mathbb{R}).
- 34. Using Taylor's theorem, show that (a) $|\sqrt{1+x} - (1 + \frac{x}{2} - \frac{x^2}{8})| \le \frac{1}{2}|x|^3$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$. (b) $x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$ for all $x \in (0, \pi)$.
- 35. Let $f : \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable such that f, f' and f'' are bounded on \mathbb{R} . Show that $\sup_{x \in \mathbb{R}} |f'(x)|^2 \leq 4 \sup_{x \in \mathbb{R}} |f(x)| \cdot \sup_{x \in \mathbb{R}} |f''(x)|$.
- 36. Let $f : [0,1] \to \mathbb{R}$ be continuous and f(1) = 0. If $f_n(x) = f(x)x^n$ for all $x \in [0,1]$ and for all $n \in \mathbb{N}$, then examine whether the sequence (f_n) converges uniformly on [0,1].
- 37. Let $f_n(x) = nx(1-x^2)^n$ for all $x \in [0,1]$ and for all $n \in \mathbb{N}$. Examine the pointwise and uniform convergence of the sequence (f_n) on [0,1].

Also, examine the validity of the equality $\lim_{n \to \infty} \int_{0}^{1} f_n(x) dx = \int_{0}^{1} (\lim_{n \to \infty} f_n(x)) dx.$

- 38. Let $E(\neq \emptyset) \subset \mathbb{R}$ and let $f, g, f_n, g_n : E \to \mathbb{R}$ $(n \in \mathbb{N})$ be such that $f_n \to f$ uniformly on E and $g_n \to g$ uniformly on E.
 - (a) Show that $f_n + g_n \to f + g$ uniformly on E.
 - (b) Is it necessary that $f_n g_n \to f g$ uniformly on E? Justify.
 - (c) If f and g are bounded on E, then show that $f_n g_n \to f g$ uniformly on E.
- 39. Let (f_n) be a sequence of real-valued uniformly continuous functions on a nonempty set $E \subset \mathbb{R}$. If $f: E \to \mathbb{R}$ is such that $f_n \to f$ uniformly on E, then show that f is uniformly continuous on E.

Does this result hold if $f_n \to f$ pointwise on E? Justify.

40. Let $E(\neq \emptyset) \subset \mathbb{R}$ and let $f, f_n : E \to \mathbb{R}$ $(n \in \mathbb{N})$ be such that $f_n \to f$ uniformly on E. If $g : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then show that $g \circ f_n \to g \circ f$ uniformly on E.