MA 541 (Real Analysis)

Assignment 1B

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are unbounded sequences of positive real numbers, then the sequence $\left(x_{n} y_{n}\right)$ cannot be convergent.
(b) A monotonic sequence $\left(x_{n}\right)$ in \mathbb{R} is convergent iff the sequence $\left(x_{n}^{2}\right)$ is convergent.
(c) If an increasing sequence $\left(x_{n}\right)$ in \mathbb{R} has a convergent subsequence, then $\left(x_{n}\right)$ must be convergent.
(d) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(x)<3$ for all $x \in \mathbb{Q}$, then it is necessary that $f(x)<3$ for all $x \in \mathbb{R}$.
(e) There exists a continuous function from $(0,1]$ onto \mathbb{R}.
(f) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at both 2 and 4 , then f must be continuous at some $c \in(2,4)$.
(g) If $f:[1,2] \rightarrow \mathbb{R}$ is differentiable, then f^{\prime} must be bounded on $[1,2]$.
(h) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then for each $c \in \mathbb{R}$, there must exist $a, b \in \mathbb{R}$ with $a<c<b$ such that $f(b)-f(a)=(b-a) f^{\prime}(c)$.
(i) The function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=x+\sin x$ for all $x \in \mathbb{R}$, is strictly increasing on \mathbb{R}.
2. Find $\sup A$ and $\inf A$, where (a) $A=\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$ (b) $A=\left\{\frac{m}{|m|+n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$.
3. Let A, B be nonempty subsets of \mathbb{R}.
(a) If A and B are bounded above, then show that $A+B=\{a+b: a \in A, b \in B\}$ is bounded above and that $\sup (A+B)=\sup A+\sup B$.
(b) If A and B are bounded below, then show that $A+B$ is bounded below and that $\inf (A+B)=$ $\inf A+\inf B$.
4. Let A be a nonempty bounded subset of \mathbb{R} and let $\alpha \in \mathbb{R}$. If $\alpha A=\{\alpha a: a \in A\}$, then show that $\sup (\alpha A)=\left\{\begin{array}{ll}\alpha \sup A & \text { if } \alpha \geq 0, \\ \alpha \inf A & \text { if } \alpha<0,\end{array} \quad\right.$ and $\inf (\alpha A)= \begin{cases}\alpha \inf A & \text { if } \alpha \geq 0, \\ \alpha \sup A & \text { if } \alpha<0 .\end{cases}$
5. Let A, B be nonempty subsets of $(0, \infty)$. If A and B are bounded above, then show that $A B=\{a b: a \in A, b \in B\}$ is bounded above and that $\sup (A B)=\sup A \cdot \sup B$.
6. Let $\left(x_{n}\right)$ be a convergent sequence in \mathbb{R} with limit $\ell \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$.
(a) If $x_{n}>\alpha$ for all $n \in \mathbb{N}$, then show that $\ell \geq \alpha$.
(b) If $\ell>\alpha$, then show that there exists $n_{0} \in \mathbb{N}$ such that $x_{n}>\alpha$ for all $n \geq n_{0}$.
(Note that ℓ can be equal to α in (a).)
7. If $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ and $y_{n}=\left(1+\frac{1}{n}\right)^{n+1}$ for all $n \in \mathbb{N}$, then show that the sequence $\left(x_{n}\right)$ is increasing and bounded above whereas the sequence $\left(y_{n}\right)$ is decreasing and bounded below.
(Thus both $\left(x_{n}\right)$ and (y_{n}) are convergent.)
8. Let a sequence $\left(x_{n}\right)$ in \mathbb{R} satisfy either of the following conditions:
(a) There exists $\alpha \in(0,1)$ such that $\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}$ for all $n \in \mathbb{N}$.
(b) There exists $\alpha \in(0,1)$ such that $\left|x_{n+2}-x_{n+1}\right| \leq \alpha\left|x_{n+1}-x_{n}\right|$ for all $n \in \mathbb{N}$.

Show that $\left(x_{n}\right)$ is a Cauchy sequence (and hence convergent).
9. Examine whether the sequences $\left(x_{n}\right)$ defined as below are convergent. Also, find their limits if they are convergent.
(a) $x_{n}=\left(a^{n}+b^{n}+c^{n}\right)^{\frac{1}{n}}$ for all $n \in \mathbb{N}$, where a, b, c are distinct positive real numbers.
(b) $x_{n}=\frac{1}{n^{2}}\left(a_{1}+\cdots+a_{n}\right)$, where $a_{n}=n+\frac{1}{n}$ for all $n \in \mathbb{N}$.
(c) $x_{n}=\frac{1}{n^{2}}([\alpha]+[2 \alpha]+\cdots+[n \alpha])$, where $\alpha \in \mathbb{R}$.
(d) $x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n+1}}$ for all $n \in \mathbb{N}$.
(e) $x_{n}=\left(\frac{\sin n+\cos n}{3}\right)^{n}$ for all $n \in \mathbb{N}$.
(f) $x_{n}=\frac{n}{3}-\left[\frac{n}{3}\right]$ for all $n \in \mathbb{N}$.
(g) $x_{n}=\left(n^{2}+1\right)^{\frac{1}{8}}-(n+1)^{\frac{1}{4}}$ for all $n \in \mathbb{N}$.
(h) $x_{1}=4$ and $x_{n+1}=3-\frac{2}{x_{n}}$ for all $n \in \mathbb{N}$.
(i) $x_{1}=1$ and $x_{n+1}=\left(\frac{n}{n+1}\right) x_{n}^{2}$ for all $n \in \mathbb{N}$.
(j) $x_{1}=0$ and $x_{n+1}=\sqrt{6+x_{n}}$ for all $n \in \mathbb{N}$.
(k) $x_{1}=1$ and $x_{n+1}=\frac{2+x_{n}}{1+x_{n}}$ for all $n \in \mathbb{N}$.
(l) $x_{1}=a, x_{2}=b$ and $x_{n+2}=\frac{1}{2}\left(x_{n}+x_{n+1}\right)$ for all $n \in \mathbb{N}$, where $a, b \in \mathbb{R}$.
10. Let $a>0$ and let $x_{1}=0, x_{n+1}=x_{n}^{2}+a$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ is convergent iff $a \leq \frac{1}{4}$.
11. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that each of the subsequences $\left(x_{2 n}\right),\left(x_{2 n-1}\right)$ and $\left(x_{3 n}\right)$ converges. Show that $\left(x_{n}\right)$ is convergent.
12. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} with $\lim _{n \rightarrow \infty} x_{n}=0$. Show that there exists a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that the series $\sum_{k=1}^{\infty} x_{n_{k}}$ is absolutely convergent.
13. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be bounded sequences in \mathbb{R}. Show that
(a) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
(b) $\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq \liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}$.

Give examples to show that the inequalities in (a) and (b) can be strict.
Also, show that if either $\left(x_{n}\right)$ or $\left(y_{n}\right)$ is convergent, then the equality holds in both (a) and (b).
14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that for each $x \in \mathbb{Q}, f(x)$ is an integer. If $f\left(\frac{1}{2}\right)=2$, then find $f\left(\frac{1}{3}\right)$.
15. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Show that f is a constant function.
16. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be continuous such that $\lim _{x \rightarrow 0+} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=1$. Show that there exists $c \in(0, \infty)$ such that $f(c)=\frac{\sqrt{3}}{2}$.
17. Let $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ be continuous such that $\sup \{f(x): x \in[0,1]\}=$ $\sup \{g(x): x \in[0,1]\}$. Show that there exists $c \in[0,1]$ such that $f(c)=g(c)$.
18. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. For $n \in \mathbb{N}$, let $x_{1}, \ldots, x_{n} \in[a, b]$ and let $\alpha_{1}, \ldots, \alpha_{n}$ be nonzero real numbers having same sign. Show that there exists $c \in[a, b]$ such that $f(c) \sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)$.
(In particular, this shows that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if for $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in[a, b]$, then there exists $\xi \in[a, b]$ such that $f(\xi)=\frac{1}{n}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)$.)
19. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous such that $f(a)=f(b)$. Show that for each $\varepsilon>0$, there exist distinct $x, y \in[a, b]$ such that $|x-y|<\varepsilon$ and $f(x)=f(y)$.
20. Let p be a non-constant polynomial of even degree with real coefficients in one real variable. Prove that exactly one of the following two statements holds.
(a) There exists $x_{0} \in \mathbb{R}$ such that $p\left(x_{0}\right) \leq p(x)$ for all $x \in \mathbb{R}$.
(b) There exists $x_{0} \in \mathbb{R}$ such that $p\left(x_{0}\right) \geq p(x)$ for all $x \in \mathbb{R}$.
21. Let $f(x)=\left|x^{3}\right|$ for all $x \in \mathbb{R}$. Examine the existence of $f^{\prime}(x), f^{\prime \prime}(x)$ and $f^{\prime \prime \prime}(x)$, where $x \in \mathbb{R}$.
22. Examine whether $f: \mathbb{R} \rightarrow \mathbb{R}$, defined as below, is differentiable at 0 .
(a) $f(x)=\left\{\begin{array}{cl}\frac{1}{2^{n+1}} & \text { if } x=\frac{1}{2^{n}} \text { for some } n \in \mathbb{N}, \\ 0 & \text { otherwise } .\end{array}\right.$
(b) $f(x)=\left\{\begin{array}{cl}\frac{1}{4^{n}} & \text { if } x=\frac{1}{2^{n}} \text { for some } n \in \mathbb{N}, \\ 0 & \text { otherwise. }\end{array}\right.$
23. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at x_{0} and let $g(x)=|f(x)|$ for all $x \in \mathbb{R}$. Show that $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0} iff either $f\left(x_{0}\right) \neq 0$ or $f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0$.
24. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable such that $f(x) \neq 0$ for all $x \in[a, b]$. Show that there exists $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{f(c)}=\frac{1}{a-c}+\frac{1}{b-c}$.
25. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable such that $f(0)=0$ and $f(1)=1$. Show that there exist $c_{1}, c_{2} \in[0,1]$ with $c_{1} \neq c_{2}$ such that $f^{\prime}\left(c_{1}\right)+f^{\prime}\left(c_{2}\right)=2$.
26. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable such that $f(0)=f(1)=0$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=f(c)$.
27. Determine all the differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ satisfying the conditions
(a) $f(0)=0, f(1)=1$ and $\left|f^{\prime}(x)\right| \leq \frac{1}{2}$ for all $x \in[0,1]$.
(b) $f(0)=0, f(1)=1$ and $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in[0,1]$.
28. Show that for each $a \in(0,1)$ and for each $b \in \mathbb{R}$, the equation $a \sin x+b=x$ has a unique root in \mathbb{R}.
29. Show that the equation $\left|x^{10}-60 x^{9}-290\right|=e^{x}$ has at least one real root.
30. Show that for each $n \in \mathbb{N}$, the equation $x^{n}+x-1=0$ has a unique root in $[0,1]$.

If for each $n \in \mathbb{N}, x_{n}$ denotes this root, then show that the sequence $\left(x_{n}\right)$ converges to 1 .
31. Prove that for each $a \geq 0$, there exists a unique $b \geq 0$ such that $a=\int_{0}^{b} \frac{1}{\left(1+x^{3}\right)^{1 / 5}} d x$.
32. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(-1)=5, f(0)=0$ and $f(1)=10$. Show that there exist $c_{1}, c_{2} \in(-1,1)$ such that $f^{\prime}\left(c_{1}\right)=-3$ and $f^{\prime}\left(c_{2}\right)=3$.
33. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(c)$ exists (in \mathbb{R}), where $c \in \mathbb{R}$. Show that $\lim _{h \rightarrow 0} \frac{f(c+h)-2 f(c)+f(c-h)}{h^{2}}=f^{\prime \prime}(c)$.
Give an example of an $f: \mathbb{R} \rightarrow \mathbb{R}$ and a point $c \in \mathbb{R}$ for which $f^{\prime \prime}(c)$ does not exist (in \mathbb{R}) but the above limit exists (in \mathbb{R}).
34. Using Taylor's theorem, show that
(a) $\left|\sqrt{1+x}-\left(1+\frac{x}{2}-\frac{x^{2}}{8}\right)\right| \leq \frac{1}{2}|x|^{3}$ for all $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$.
(b) $x-\frac{x^{3}}{3!}<\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ for all $x \in(0, \pi)$.
35. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable such that f, f^{\prime} and $f^{\prime \prime}$ are bounded on \mathbb{R}. Show that $\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right|^{2} \leq 4 \sup _{x \in \mathbb{R}}|f(x)| \cdot \sup _{x \in \mathbb{R}}\left|f^{\prime \prime}(x)\right|$.
36. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $f(1)=0$. If $f_{n}(x)=f(x) x^{n}$ for all $x \in[0,1]$ and for all $n \in \mathbb{N}$, then examine whether the sequence $\left(f_{n}\right)$ converges uniformly on $[0,1]$.
37. Let $f_{n}(x)=n x\left(1-x^{2}\right)^{n}$ for all $x \in[0,1]$ and for all $n \in \mathbb{N}$. Examine the pointwise and uniform convergence of the sequence $\left(f_{n}\right)$ on $[0,1]$.
Also, examine the validity of the equality $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x$.
38. Let $E(\neq \emptyset) \subset \mathbb{R}$ and let $f, g, f_{n}, g_{n}: E \rightarrow \mathbb{R}(n \in \mathbb{N})$ be such that $f_{n} \rightarrow f$ uniformly on E and $g_{n} \rightarrow g$ uniformly on E.
(a) Show that $f_{n}+g_{n} \rightarrow f+g$ uniformly on E.
(b) Is it necessary that $f_{n} \cdot g_{n} \rightarrow f . g$ uniformly on E ? Justify.
(c) If f and g are bounded on E, then show that $f_{n} \cdot g_{n} \rightarrow f . g$ uniformly on E.
39. Let $\left(f_{n}\right)$ be a sequence of real-valued uniformly continuous functions on a nonempty set $E \subset \mathbb{R}$. If $f: E \rightarrow \mathbb{R}$ is such that $f_{n} \rightarrow f$ uniformly on E, then show that f is uniformly continuous on E.
Does this result hold if $f_{n} \rightarrow f$ pointwise on E ? Justify.
40. Let $E(\neq \emptyset) \subset \mathbb{R}$ and let $f, f_{n}: E \rightarrow \mathbb{R}(n \in \mathbb{N})$ be such that $f_{n} \rightarrow f$ uniformly on E. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous, then show that $g \circ f_{n} \rightarrow g \circ f$ uniformly on E.

