
MA 541 (Real Analysis)

Assignment 1B

1. State TRUE or FALSE giving proper justification for each of the following statements.

(a) If both (xn) and (yn) are unbounded sequences of positive real numbers, then the sequence

(xnyn) cannot be convergent.

(b) A monotonic sequence (xn) in R is convergent iff the sequence (x2n) is convergent.

(c) If an increasing sequence (xn) in R has a convergent subsequence, then (xn) must be

convergent.

(d) If f : R → R is continuous and f(x) < 3 for all x ∈ Q, then it is necessary that f(x) < 3

for all x ∈ R.

(e) There exists a continuous function from (0, 1] onto R.

(f) If f : R→ R is continuous at both 2 and 4, then f must be continuous at some c ∈ (2, 4).

(g) If f : [1, 2]→ R is differentiable, then f ′ must be bounded on [1, 2].

(h) If f : R→ R is differentiable, then for each c ∈ R, there must exist a, b ∈ R with a < c < b

such that f(b)− f(a) = (b− a)f ′(c).

(i) The function f : R→ R, defined by f(x) = x+ sinx for all x ∈ R, is strictly increasing on

R.

2. Find supA and inf A, where (a) A = { m
m+n

: m,n ∈ N} (b) A = { m
|m|+n

: m ∈ Z, n ∈ N}.

3. Let A, B be nonempty subsets of R.

(a) If A and B are bounded above, then show that A+B = {a+ b : a ∈ A, b ∈ B} is bounded

above and that sup(A+B) = supA+ supB.

(b) If A and B are bounded below, then show that A+B is bounded below and that inf(A+B) =

inf A+ inf B.

4. Let A be a nonempty bounded subset of R and let α ∈ R. If αA = {αa : a ∈ A}, then show

that sup(αA) =

{
α supA if α ≥ 0,
α inf A if α < 0,

and inf(αA) =

{
α inf A if α ≥ 0,
α supA if α < 0.

5. Let A, B be nonempty subsets of (0,∞). If A and B are bounded above, then show that

AB = {ab : a ∈ A, b ∈ B} is bounded above and that sup(AB) = supA · supB.

6. Let (xn) be a convergent sequence in R with limit ` ∈ R and let α ∈ R.

(a) If xn > α for all n ∈ N, then show that ` ≥ α.

(b) If ` > α, then show that there exists n0 ∈ N such that xn > α for all n ≥ n0.

(Note that ` can be equal to α in (a).)

7. If xn = (1 + 1
n
)n and yn = (1 + 1

n
)n+1 for all n ∈ N, then show that the sequence (xn) is

increasing and bounded above whereas the sequence (yn) is decreasing and bounded below.

(Thus both (xn) and (yn) are convergent.)

8. Let a sequence (xn) in R satisfy either of the following conditions:

(a) There exists α ∈ (0, 1) such that |xn+1 − xn| ≤ αn for all n ∈ N.

(b) There exists α ∈ (0, 1) such that |xn+2 − xn+1| ≤ α|xn+1 − xn| for all n ∈ N.



Show that (xn) is a Cauchy sequence (and hence convergent).

9. Examine whether the sequences (xn) defined as below are convergent. Also, find their limits if

they are convergent.

(a) xn = (an + bn + cn)
1
n for all n ∈ N, where a, b, c are distinct positive real numbers.

(b) xn = 1
n2 (a1 + · · ·+ an), where an = n+ 1

n
for all n ∈ N.

(c) xn = 1
n2 ([α] + [2α] + · · ·+ [nα]), where α ∈ R.

(d) xn = 1√
n2+1

+ 1√
n2+2

+ · · ·+ 1√
n2+n+1

for all n ∈ N.

(e) xn = ( sinn+cosn
3

)n for all n ∈ N.

(f) xn = n
3
− [n

3
] for all n ∈ N.

(g) xn = (n2 + 1)
1
8 − (n+ 1)

1
4 for all n ∈ N.

(h) x1 = 4 and xn+1 = 3− 2
xn

for all n ∈ N.

(i) x1 = 1 and xn+1 = ( n
n+1

)x2n for all n ∈ N.

(j) x1 = 0 and xn+1 =
√

6 + xn for all n ∈ N.

(k) x1 = 1 and xn+1 = 2+xn

1+xn
for all n ∈ N.

(l) x1 = a, x2 = b and xn+2 = 1
2
(xn + xn+1) for all n ∈ N, where a, b ∈ R.

10. Let a > 0 and let x1 = 0, xn+1 = x2n+a for all n ∈ N. Show that the sequence (xn) is convergent

iff a ≤ 1
4
.

11. Let (xn) be a sequence in R such that each of the subsequences (x2n), (x2n−1) and (x3n) con-

verges. Show that (xn) is convergent.

12. Let (xn) be a sequence in R with lim
n→∞

xn = 0. Show that there exists a subsequence (xnk
) of

(xn) such that the series
∞∑
k=1

xnk
is absolutely convergent.

13. Let (xn) and (yn) be bounded sequences in R. Show that

(a) lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn.

(b) lim inf
n→∞

(xn + yn) ≥ lim inf
n→∞

xn + lim inf
n→∞

yn.

Give examples to show that the inequalities in (a) and (b) can be strict.

Also, show that if either (xn) or (yn) is convergent, then the equality holds in both (a) and (b).

14. Let f : R → R be continuous such that for each x ∈ Q, f(x) is an integer. If f(1
2
) = 2, then

find f(1
3
).

15. Let f : R→ R be continuous such that f(x) = f(x2) for all x ∈ R. Show that f is a constant

function.

16. Let f : (0,∞)→ R be continuous such that lim
x→0+

f(x) = 0 and lim
x→∞

f(x) = 1. Show that there

exists c ∈ (0,∞) such that f(c) =
√
3
2

.

17. Let f : [0, 1]→ R and g : [0, 1]→ R be continuous such that sup{f(x) : x ∈ [0, 1]} =

sup{g(x) : x ∈ [0, 1]}. Show that there exists c ∈ [0, 1] such that f(c) = g(c).



18. Let f : [a, b] → R be continuous. For n ∈ N, let x1, ..., xn ∈ [a, b] and let α1, ..., αn be nonzero

real numbers having same sign. Show that there exists c ∈ [a, b] such that

f(c)
n∑

i=1

αi =
n∑

i=1

αif(xi).

(In particular, this shows that if f : [a, b]→ R is continuous and if for n ∈ N, x1, ..., xn ∈ [a, b],

then there exists ξ ∈ [a, b] such that f(ξ) = 1
n
(f(x1) + · · ·+ f(xn)).)

19. Let f : [a, b] → R be continuous such that f(a) = f(b). Show that for each ε > 0, there exist

distinct x, y ∈ [a, b] such that |x− y| < ε and f(x) = f(y).

20. Let p be a non-constant polynomial of even degree with real coefficients in one real variable.

Prove that exactly one of the following two statements holds.

(a) There exists x0 ∈ R such that p(x0) ≤ p(x) for all x ∈ R.

(b) There exists x0 ∈ R such that p(x0) ≥ p(x) for all x ∈ R.

21. Let f(x) = |x3| for all x ∈ R. Examine the existence of f ′(x), f ′′(x) and f ′′′(x), where x ∈ R.

22. Examine whether f : R→ R, defined as below, is differentiable at 0.

(a) f(x) =

{
1

2n+1 if x = 1
2n

for some n ∈ N,
0 otherwise.

(b) f(x) =

{
1
4n

if x = 1
2n

for some n ∈ N,
0 otherwise.

23. Let f : R→ R be differentiable at x0 and let g(x) = |f(x)| for all x ∈ R. Show that g : R→ R
is differentiable at x0 iff either f(x0) 6= 0 or f(x0) = f ′(x0) = 0.

24. Let f : [a, b]→ R be differentiable such that f(x) 6= 0 for all x ∈ [a, b]. Show that there exists

c ∈ (a, b) such that f ′(c)
f(c)

= 1
a−c + 1

b−c .

25. Let f : [0, 1] → R be differentiable such that f(0) = 0 and f(1) = 1. Show that there exist

c1, c2 ∈ [0, 1] with c1 6= c2 such that f ′(c1) + f ′(c2) = 2.

26. Let f : [0, 1]→ R be differentiable such that f(0) = f(1) = 0. Show that there exists c ∈ (0, 1)

such that f ′(c) = f(c).

27. Determine all the differentiable functions f : [0, 1]→ R satisfying the conditions

(a) f(0) = 0, f(1) = 1 and |f ′(x)| ≤ 1
2

for all x ∈ [0, 1].

(b) f(0) = 0, f(1) = 1 and |f ′(x)| ≤ 1 for all x ∈ [0, 1].

28. Show that for each a ∈ (0, 1) and for each b ∈ R, the equation a sinx+ b = x has a unique root

in R.

29. Show that the equation |x10 − 60x9 − 290| = ex has at least one real root.

30. Show that for each n ∈ N, the equation xn + x− 1 = 0 has a unique root in [0, 1].

If for each n ∈ N, xn denotes this root, then show that the sequence (xn) converges to 1.



31. Prove that for each a ≥ 0, there exists a unique b ≥ 0 such that a =
b∫
0

1
(1+x3)1/5

dx.

32. Let f : R→ R be differentiable such that f(−1) = 5, f(0) = 0 and f(1) = 10. Show that there

exist c1, c2 ∈ (−1, 1) such that f ′(c1) = −3 and f ′(c2) = 3.

33. Let f : R→ R be such that f ′′(c) exists (in R), where c ∈ R. Show that

lim
h→0

f(c+h)−2f(c)+f(c−h)
h2 = f ′′(c).

Give an example of an f : R→ R and a point c ∈ R for which f ′′(c) does not exist (in R) but

the above limit exists (in R).

34. Using Taylor’s theorem, show that

(a) |
√

1 + x− (1 + x
2
− x2

8
)| ≤ 1

2
|x|3 for all x ∈ (−1

2
, 1
2
).

(b) x− x3

3!
< sinx < x− x3

3!
+ x5

5!
for all x ∈ (0, π).

35. Let f : R → R be twice continuously differentiable such that f , f ′ and f ′′ are bounded on R.

Show that sup
x∈R
|f ′(x)|2 ≤ 4 sup

x∈R
|f(x)| · sup

x∈R
|f ′′(x)|.

36. Let f : [0, 1] → R be continuous and f(1) = 0. If fn(x) = f(x)xn for all x ∈ [0, 1] and for all

n ∈ N, then examine whether the sequence (fn) converges uniformly on [0, 1].

37. Let fn(x) = nx(1−x2)n for all x ∈ [0, 1] and for all n ∈ N. Examine the pointwise and uniform

convergence of the sequence (fn) on [0, 1].

Also, examine the validity of the equality lim
n→∞

1∫
0

fn(x) dx =
1∫
0

( lim
n→∞

fn(x)) dx.

38. Let E( 6= ∅) ⊂ R and let f, g, fn, gn : E → R (n ∈ N) be such that fn → f uniformly on E and

gn → g uniformly on E.

(a) Show that fn + gn → f + g uniformly on E.

(b) Is it necessary that fn.gn → f.g uniformly on E? Justify.

(c) If f and g are bounded on E, then show that fn.gn → f.g uniformly on E.

39. Let (fn) be a sequence of real-valued uniformly continuous functions on a nonempty set E ⊂ R.

If f : E → R is such that fn → f uniformly on E, then show that f is uniformly continuous

on E.

Does this result hold if fn → f pointwise on E? Justify.

40. Let E( 6= ∅) ⊂ R and let f, fn : E → R (n ∈ N) be such that fn → f uniformly on E. If

g : R→ R is uniformly continuous, then show that g ◦ fn → g ◦ f uniformly on E.


