Assignment 1A

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \in \mathbb{Q}$ for all $x \in \mathbb{R} \setminus \mathbb{Q}$ and $f(x) \in \mathbb{R} \setminus \mathbb{Q}$ for all $x \in \mathbb{Q}$.
 - (b) If (f_n) is a sequence in C[0,1] such that $|f_{n+1}(x) f_n(x)| \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$ and for all $x \in [0,1]$, then there must exist $f \in C[0,1]$ such that $\int_{0}^{1} |f_n(x) f(x)| dx \to 0$ as $n \to \infty$.
- 2. Let A be a nonempty bounded subset of \mathbb{R} . Show that $\sup\{|x-y|: x, y \in A\} = \sup A \inf A$.
- 3. Let (x_n) be a convergent sequence of positive real numbers such that $\lim_{n \to \infty} x_n < 1$. Show that $\lim_{n \to \infty} x_n^n = 0$.
- 4. Let (x_n) be a sequence in \mathbb{R} and let $y_n = \frac{1}{n}(x_1 + \dots + x_n)$ for all $n \in \mathbb{N}$. If (x_n) is convergent, then show that (y_n) is also convergent. If (y_n) is convergent, then is it necessary that (x_n) is (a) convergent? (b) bounded? Justify.
- 5. For $a \in \mathbb{R}$, let $x_1 = a$ and $x_{n+1} = \frac{1}{4}(x_n^2 + 3)$ for all $n \in \mathbb{N}$. Examine the convergence of the sequence (x_n) for different values of a. Also, find $\lim_{n \to \infty} x_n$ whenever it exists (in \mathbb{R}).
- 6. Let (x_n) be a sequence in \mathbb{R} and let $x \in \mathbb{R}$. If every subsequence of (x_n) has a further subsequence converging to x, then show that $x_n \to x$.
- 7. Let (x_n) be a sequence of nonzero real numbers. Prove or disprove the following statements.
 - (a) If (x_n) is unbounded, then the sequence $(\frac{1}{x_n})$ must converge to 0.
 - (b) If (x_n) does not have any convergent subsequence, then the sequence $(\frac{1}{x_n})$ must converge to 0.
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ [x] & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Determine all the points of \mathbb{R} where f is continuous.
- 9. Let $f:[0,1] \to \mathbb{R}$ be continuous such that f(0) = f(1). Show that
 - (a) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{2}$.

(b) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 - x_2 = \frac{1}{3}$.

(In fact, if $n \in \mathbb{N}$, then there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 - x_2 = \frac{1}{n}$. However, it is not necessary that there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 - x_2 = \frac{2}{5}$.)

10. Let p be an odd degree polynomial with real coefficients in one real variable. If $g : \mathbb{R} \to \mathbb{R}$ is a bounded continuous function, then show that there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$.

(In particular, this shows that

- (a) every odd degree polynomial with real coefficients in one real variable has at least one real zero.
- (b) the equation $x^9 4x^6 + x^5 + \frac{1}{1+x^2} = \sin 3x + 17$ has at least one real root.
- (c) the range of every odd degree polynomial with real coefficients in one real variable is \mathbb{R} .)
- 11. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (a) Is it possible for f to be not continuous? Justify.
 - (b) If f is continuous at some point of \mathbb{R} , then show that f(x) = f(1)x for all $x \in \mathbb{R}$.
- 12. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 |\cos \frac{\pi}{x}| & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$ Examine whether f is differentiable (a) at 0 (b) on (0, 1).
- 13. Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable at 0. If $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$, then find f'(0) and f''(0).
- 14. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0 and f'(0) > 0, f'(1) > 0. Show that there exist $c_1, c_2 \in (0, 1)$ with $c_1 \neq c_2$ such that $f'(c_1) = f'(c_2) = 0$.
- 15. For $n \in \mathbb{N}$, show that the equation $1 x + \frac{x^2}{2} \frac{x^3}{3} + \dots + (-1)^n \frac{x^n}{n} = 0$ has exactly one real root if n is odd and has no real root if n is even.
- 16. Let $A(\neq \emptyset) \subset \mathbb{R}^n$ be such that every continuous function $f : A \to \mathbb{R}$ is bounded. Show that A is a closed and bounded subset of \mathbb{R}^n .
- 17. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $\lim_{|x|\to\infty} f(x) = 0$. Show that f is uniformly continuous on \mathbb{R} .
- 18. Let $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Show that there cannot exist a sequence (f_n) of real-valued continuous functions on \mathbb{R} such that $f_n \to f$ pointwise on \mathbb{R} .
- 19. Let $f_n(x) = nx(1-x^2)^n$ for all $x \in [0,1]$ and for all $n \in \mathbb{N}$. Examine the pointwise and uniform convergence of the sequence (f_n) on [0,1].

Also, examine the validity of the equality $\lim_{n \to \infty} \int_{0}^{1} f_n(x) dx = \int_{0}^{1} (\lim_{n \to \infty} f_n(x)) dx.$

20. Let $E(\neq \emptyset) \subset \mathbb{R}$ and let (f_n) be a sequence of real-valued bounded functions on E. If $f: E \to \mathbb{R}$ is such that $f_n \to f$ uniformly on E, then show that f is bounded on E. Does this result hold if $f_n \to f$ pointwise on E? Justify.

21. If $f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx^2)}{n^3+1}$ for all $x \in \mathbb{R}$, then show that $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable.

22. Let $f: [0,1] \to \mathbb{R}$ be continuous and $\int_{0}^{1} x^{n} f(x) dx = 0$ for all $\mathbb{N} \cup \{0\}$. Show that f(x) = 0 for all $x \in [0,1]$.