MA 541 (Real Analysis)

Assignment 1A

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \in \mathbb{Q}$ for all $x \in \mathbb{R} \backslash \mathbb{Q}$ and $f(x) \in \mathbb{R} \backslash \mathbb{Q}$ for all $x \in \mathbb{Q}$.
(b) If $\left(f_{n}\right)$ is a sequence in $C[0,1]$ such that $\left|f_{n+1}(x)-f_{n}(x)\right| \leq \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$ and for all $x \in[0,1]$, then there must exist $f \in C[0,1]$ such that $\int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x \rightarrow 0$ as $n \rightarrow \infty$.
2. Let A be a nonempty bounded subset of \mathbb{R}. Show that $\sup \{|x-y|: x, y \in A\}=\sup A-\inf A$.
3. Let $\left(x_{n}\right)$ be a convergent sequence of positive real numbers such that $\lim _{n \rightarrow \infty} x_{n}<1$. Show that $\lim _{n \rightarrow \infty} x_{n}^{n}=0$.
4. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} and let $y_{n}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)$ for all $n \in \mathbb{N}$. If $\left(x_{n}\right)$ is convergent, then show that $\left(y_{n}\right)$ is also convergent.
If $\left(y_{n}\right)$ is convergent, then is it necessary that $\left(x_{n}\right)$ is (a) convergent? (b) bounded? Justify.
5. For $a \in \mathbb{R}$, let $x_{1}=a$ and $x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+3\right)$ for all $n \in \mathbb{N}$. Examine the convergence of the sequence $\left(x_{n}\right)$ for different values of a. Also, find $\lim _{n \rightarrow \infty} x_{n}$ whenever it exists (in \mathbb{R}).
6. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} and let $x \in \mathbb{R}$. If every subsequence of $\left(x_{n}\right)$ has a further subsequence converging to x, then show that $x_{n} \rightarrow x$.
7. Let $\left(x_{n}\right)$ be a sequence of nonzero real numbers. Prove or disprove the following statements.
(a) If $\left(x_{n}\right)$ is unbounded, then the sequence $\left(\frac{1}{x_{n}}\right)$ must converge to 0 .
(b) If $\left(x_{n}\right)$ does not have any convergent subsequence, then the sequence $\left(\frac{1}{x_{n}}\right)$ must converge to 0 .
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}x & \text { if } x \in \mathbb{Q}, \\ {[x]} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Determine all the points of \mathbb{R} where f is continuous.
9. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous such that $f(0)=f(1)$. Show that
(a) there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{1}{2}$.
(b) there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{1}{3}$.
(In fact, if $n \in \mathbb{N}$, then there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{1}{n}$. However, it is not necessary that there exist $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1}-x_{2}=\frac{2}{5}$.)
10. Let p be an odd degree polynomial with real coefficients in one real variable. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded continuous function, then show that there exists $x_{0} \in \mathbb{R}$ such that $p\left(x_{0}\right)=g\left(x_{0}\right)$.
(In particular, this shows that
(a) every odd degree polynomial with real coefficients in one real variable has at least one real zero.
(b) the equation $x^{9}-4 x^{6}+x^{5}+\frac{1}{1+x^{2}}=\sin 3 x+17$ has at least one real root.
(c) the range of every odd degree polynomial with real coefficients in one real variable is \mathbb{R}.)
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(a) Is it possible for f to be not continuous? Justify.
(b) If f is continuous at some point of \mathbb{R}, then show that $f(x)=f(1) x$ for all $x \in \mathbb{R}$.
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}x^{2}\left|\cos \frac{\pi}{x}\right| & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$

Examine whether f is differentiable (a) at 0 (b) on (0,1).
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable at 0 . If $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$, then find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(0)=f(1)=0$ and $f^{\prime}(0)>0, f^{\prime}(1)>0$. Show that there exist $c_{1}, c_{2} \in(0,1)$ with $c_{1} \neq c_{2}$ such that $f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)=0$.
15. For $n \in \mathbb{N}$, show that the equation $1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\cdots+(-1)^{n} \frac{x^{n}}{n}=0$ has exactly one real root if n is odd and has no real root if n is even.
16. Let $A(\neq \emptyset) \subset \mathbb{R}^{n}$ be such that every continuous function $f: A \rightarrow \mathbb{R}$ is bounded. Show that A is a closed and bounded subset of \mathbb{R}^{n}.
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $\lim _{|x| \rightarrow \infty} f(x)=0$. Show that f is uniformly continuous on \mathbb{R}.
18. Let $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{cases}$

Show that there cannot exist a sequence $\left(f_{n}\right)$ of real-valued continuous functions on \mathbb{R} such that $f_{n} \rightarrow f$ pointwise on \mathbb{R}.
19. Let $f_{n}(x)=n x\left(1-x^{2}\right)^{n}$ for all $x \in[0,1]$ and for all $n \in \mathbb{N}$. Examine the pointwise and uniform convergence of the sequence $\left(f_{n}\right)$ on $[0,1]$.
Also, examine the validity of the equality $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x$.
20. Let $E(\neq \emptyset) \subset \mathbb{R}$ and let $\left(f_{n}\right)$ be a sequence of real-valued bounded functions on E. If $f: E \rightarrow \mathbb{R}$ is such that $f_{n} \rightarrow f$ uniformly on E, then show that f is bounded on E.
Does this result hold if $f_{n} \rightarrow f$ pointwise on E ? Justify.
21. If $f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n x^{2}\right)}{n^{3}+1}$ for all $x \in \mathbb{R}$, then show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable.
22. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $\int_{0}^{1} x^{n} f(x) d x=0$ for all $\mathbb{N} \cup\{0\}$. Show that $f(x)=0$ for all $x \in[0,1]$.

