MA15010H: Multi-variable Calculus

(Assignment 7 Hint/Model solutions: Line and surface integrals) September - November, 2025

1. Find the line integral of the vector field F(x,y,z) = yi - xj + k along the path $c(t) = (\cos t, \sin t, \frac{t}{2\pi}), \ 0 \le t \le 2\pi$ joining (1,0,0) to (1,0,1). Solution:

$$\int F \cdot dc = \int_0^{2\pi} F((c(t)) \cdot c'(t)) dt = 1 - 2\pi.$$

2. Evaluate $\int_C T \cdot dR$, where C is the circle $x^2 + y^2 = 1$ and T is the unit tangent vector.

Solution: The unit circle can be represented by $C = \{R(t) : 0 \le t < 2\pi\}$. The unit tangent vector T to C is given $T(t) = \frac{R'(t)}{\|R'(t)\|}$. Hence

$$\int_C T \cdot dR = \int_0^{2\pi} \frac{R'(t)}{\|R'(t)\|} \cdot R'(t)dt = 2\pi.$$

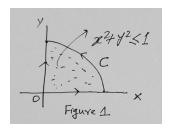
3. Show that the integral $\int_C yzdx + (xz+1)dy + xydz$ is independent of the path C joining (1,0,0) and (2,1,4).

Solution: Let F(x, y, z) = (yz, xz + 1, xy). Consider f(x, y, z) = xyz + y + c. Then $\nabla f(x, y, z) = (yz, xz + 1, xy) = F(x, y, z)$. Hence, by second FTC for line integral

$$\int_C \nabla f \cdot dR = f(2, 1, 4) - f(1, 0, 0).$$

That is, the given line integral is path independent. Note that one can $\nabla f = F$ for f by doing indefinite integral.

4. Use Green's Theorem to compute $\int_C (2x^2 - y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region $\{(x,y): x,y \geq 0 \text{ and } x^2 + y^2 \leq 1\}$. Solution: Let $M(x,y) = 2x^2 - y^2$ and $N = x^2 + y^2$. Then $N_x - M_y = 2(x+y)$. Let $D = \{(x,y): x,y \geq 0 \text{ and } x^2 + y^2 \leq 1\}$.



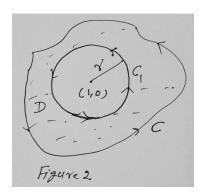
Note that C is a simple closed and piece wise smooth curve, as shown in Figure 1. Then by Green's theorem

$$\int_{C} Mdx + Ndy = \iint_{D} 2(x+y)dxdy.$$

Use polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$, where $0 < r \le 1$ and $0 \le \theta \le \frac{\pi}{2}$.

5. If C is any simple closed and smooth curve in \mathbb{R}^2 which is not passing through the point (1,0), then evaluate the integral $\int_C \frac{-ydx + (x-1)dy}{(x-1)^2 + y^2}$.

Solution: Let $M(x,y) = -\frac{y}{(x-1)^2+y^2}$ and $N(x,y) = \frac{x-1}{(x-1)^2+y^2}$. Note that M and N are not continuous at (0,0). Let C_1 be a circle of radius r centered at (1,0) which is in the interior of domain D enclosed by C. Please see Figure 2.



A simple calculation shows that $N_x - M_y = 0$ on D. By Green'n theorem for multiply connected domain,

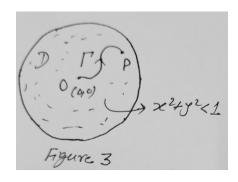
$$\int_{C} Mdx + Ndy - \int_{C_1} Mdx + Ndy = \iint_{D} (N_x - M_y) dx dy = 0.$$

Use the parametrization $x - 1 = r \cos t$ and $y = r \sin t$, $0 \le t < 2\pi$. Then

$$\int_{C} Mdx + Ndy = \int_{C_{1}} Mdx + Ndy = 2\pi.$$

6. Let $D = \{(x,y): x^2 + y^2 < 1\}$. If $f: D \to R^2$ is a continuously differentiable function such that $\int_{\Gamma} f \cdot dR = 0$ for every curve Γ in D, then f constant.

Solution: Let P = (x, y) be an arbitrary point in D. Then there exists a smooth curve Γ connecting origin and P as shown in Figure 3.



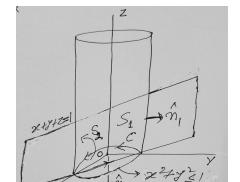
Let $\Gamma = \{R(t): a \leq t \leq s\}$ and $f = (f_1, f_2)$. Then by the given condition

$$\int_{a}^{s} f(R(t)) \cdot R'(t)dt = 0.$$

Since point P is arbitrary, the above condition holds for every choice of $s \leq a$. Hence, $f(R(t)) \cdot R'(t) = 0$ for all $t \in [a, s]$. Choose R(t) = (t + x, y) then R'(s) = (1, 0). This implies $f_1(P) = f_1(R(s)) = 0$. Similarly, we can select R(t) such that R'(s) = (0, 1). Hence, $f_2(P) = 0$. Thus, f = 0 on D.

7. Use Stokes' Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy - z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.

Solution: Let $S = S_1 \cup S_2$, as shown in Figure 4. Note that S_1 is the surface of part



Let $F(x, y, z) = (-y^3, x^3, -z^3)$. Then by stoke's theorem,

of the cylinder whereas S_2 is the base of the cylinder.

$$\oint_C F \cdot dR = \iint_S \operatorname{curl} F \cdot \hat{n} \, d\sigma = \left(\iint_{S_1} + \iint_{S_2} \right) \operatorname{curl} F \cdot \hat{n} \, d\sigma.$$

Note that curl $F(x, y, z) = 3(x^2 + y^2)k$. Unit vector \hat{n}_1 on S_1 is given by $\hat{n}_1 = \frac{r_\alpha \times r_\beta}{\|r_\alpha \times r_\beta\|}$, and $d\sigma_1(\alpha, \beta) = \|r_\alpha \times r_\beta\| d\alpha d\beta$, where $r(\alpha, \beta) = (\cos \alpha, \sin \frac{\alpha}{\beta})$ with $0 \le \alpha < 2\pi$, and $0 \le \beta \le 1 - \cos \alpha - \sin \alpha$. Hence

$$\iint_{S_1} \operatorname{curl} F \cdot \hat{n}_1 d\sigma = \int_{\alpha=0}^{2\pi} \int_{\beta=0}^{1-\cos\alpha-\sin\alpha} (3k) \cdot (r_\alpha \times r_\beta) d\alpha d\beta.$$

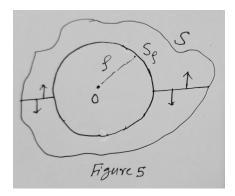
Further, unit vector \hat{n}_2 on S_2 is given by $\hat{n}_2(\alpha, \beta) = -k$ and $d\sigma_2(x, y) = dxdy$. Thus,

$$\iint_{S_2} \operatorname{curl} F \cdot \hat{n}_2 d\sigma = \iint_R -3(x^2 + y^2) dx dy,$$

where R is the region $\{(x,y): x^2+y^2 \le 1 \text{ and } x+y \le 1\}.$

8. Let $\vec{F} = \frac{\vec{r}}{|\vec{r}|^3}$, where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_S \vec{F} \cdot \hat{n} d\sigma = 4\pi$.

Solution: Note that \vec{F} is not continuous at the origin O. Let S_{ρ} be the sphere of radius ρ centered at O so that S_{ρ} is in the interior of the domain D enclosed by S, as shown in Figure 5. A simple calculation show that div F = 0 on D.



By divergence theorem, we get

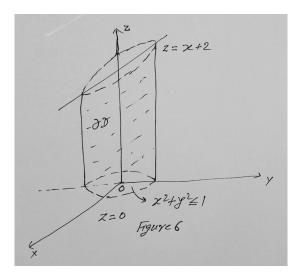
$$\iint_{S} \vec{F} \cdot \hat{n} d\sigma - \iint_{S_{\rho}} \vec{F} \cdot \hat{n} d\sigma = \iint_{D} \operatorname{div} \vec{F} dV = 0.$$

The surface of S_{ρ} can be represented by $F(x,y,z)=x^2+y^2+z^2-\rho^2$. Hence the unit vector on S_{ρ} is given by $\hat{n}=\frac{\nabla F}{\|\nabla F\|}=\frac{\vec{r}}{\rho}$. Note that the surface of S_{ρ} can be represented by $v(\theta,\phi)=(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)$. Hence surface element on S_{ρ} will be given by $d\sigma(\theta,\phi)=\|v_{\theta}\times v_{\phi}\|d\theta d\phi=\rho^2\sin\phi d\theta d\phi$, where $x=\rho\sin\phi\cos\theta$, $y=\rho\sin\phi\sin\theta$, $z=\rho\cos\phi$, $0\leq\theta<2\pi$ and $0\leq\phi<\pi$. Thuis,

$$\iint\limits_{\mathcal{S}} \vec{F} \cdot \hat{n} d\sigma = \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \frac{\vec{r}}{|\vec{r}|^3} \cdot \frac{\vec{r}}{\rho} \rho^2 \sin \phi d\theta d\phi = 4\pi.$$

9. Let D be the domain inside the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2. If $\vec{F} = (x^2 + ye^z, y^2 + ze^x, z + xe^y)$, use divergence theorem to evaluate $\iint_{\partial D} F \cdot \hat{n} \, d\sigma$.

Solution: Please refer to Figure 6.



By divergence theorem, we get

$$\iint\limits_{\partial D} F \cdot \hat{n} \ d\sigma = \iint\limits_{D} \operatorname{div} \vec{F} dV = \iint\limits_{x^2 + y^2 \le 1} \left(\int_{z=0}^{x+2} (2x + 2y + 1) dz \right) dx dy.$$

Use polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$.