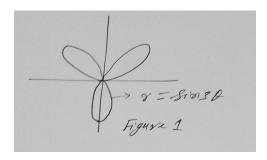
MA15010H: Multi-variable Calculus

(Assignment 6 Hint/Model solutions: Change of variables, triple integral) September - November, 2025

1. Using double integral, find the area enclosed by the curve $r = \sin 3\theta$ given in polar coordinates.

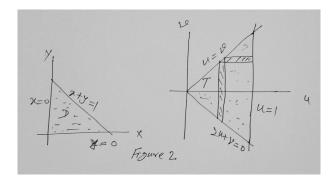
Solution: Please see Figure 1.



The curve is given by $r = \sin 3\theta$, where $\theta \in [0, 2\pi)$. Area $= 3 \int_{0}^{\frac{\pi}{3}} \int_{r=0}^{\sin 3\theta} r dr d\theta$.

2. Evaluate the double integral $\iint_D \sqrt{x+y} (y-2x)^2 dy dx$ over the domain D bounded by the lines x=0, y=0 and x+y=1.

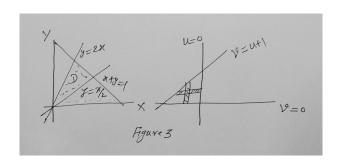
Solution: Let u = x + y and v = y - 2x. Then $x = \frac{u - v}{3}$ and $y = \frac{2u + v}{3}$.



Here $J(u,v)=\frac{1}{3}$. Note that the line y=0 is mapped to u=x and v=-2x. Similarly, the line x=0 is mapped to u=y and v=y. That is, x=0 is mapped to u=v. Also, x+y=1 is mapped to u=1. Interior of D mapped to the interior of the triangle T as shown in the Figure 2. Hence

$$\iint\limits_{D} \sqrt{x+y} \ (y-2x)^2 dy dx = \frac{1}{3} \iint\limits_{T} \sqrt{u} \ v^2 dv du = \frac{1}{3} \int_{u=0}^{1} \left(\int_{v=-2u}^{u} \sqrt{u} \ v^2 dv \right) du.$$

3. Evaluate the integral $\iint_D e^{(x-2y)} dxdy$ over the domain D bounded by the lines x-2y=0, 2x-y=0 and x+y=1 as shown in Figure 3.



Solution: Put u = x - 2y and v = 2x - y. Then $x = \frac{2v - u}{3}$ and $y = \frac{v - 2u}{3}$. It is clear that x - 2y = 0 is mapped to u = 0 and 2x - y = 0 is mapped to v = 0. Also, x + y = 1 is mapped to v - u = 1. Here $J(u, v) = \frac{1}{3}$. Hence

$$\iint\limits_{D} e^{(x-2y)} dx dy = \frac{1}{3} \int_{u=-1}^{0} \left(\int_{v=0}^{u+1} e^{u} dv \right) du = \frac{1}{3} \int_{u=-1}^{0} e^{u} (u+1) du.$$

4. Compute $\lim_{a\to\infty} \iint_{D(a)} e^{-(x^2+y^2)} dxdy$, where

(a)
$$D(a) = \{(x,y) : x^2 + y^2 \le a^2\}$$
 and (b) $D(a) = \{(x,y) : 0 \le x \le a, 0 \le y \le a\}$

Hence prove that (c)
$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
 (d)
$$\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$

Solution: (a) Let $D_1(a) = \{(x,y) : x^2 + y^2 \le a^2\}$. Then by using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$, we have

$$I_1(a) = \iint_{D_1(a)} e^{-(x^2 + y^2)} dx dy = \int_0^{2\pi} \int_{r=0}^a e^{-r^2} r dr d\theta = \pi (1 - e^{-a^2}) \to \pi.$$

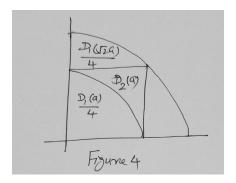
(b) Write $D_2(a) = \{(x, y) : 0 \le x \le a, 0 \le y \le a\}$. It is clear from Figure 4

that $\frac{D_1(a)}{4} < D_2(a) < \frac{D_1(\sqrt{2}a)}{4}$. Let $I_2(a) = \iint_{D_2(a)} e^{-(x^2+y^2)} dx dy$. Then the corresponding

integrals satisfy $\frac{I_1(a)}{4} < I_2(a) < \frac{I_1(\sqrt{2}a)}{4}$. By sandwich theorem, we get $\lim_{a \to \infty} I_2(a) = \frac{\pi}{4}$.

(c) Let $I(a) = \int_0^a e^{-x^2} dx$. Then by Fubini's theorem,

$$I^{2}(a) = \left(\int_{0}^{a} e^{-x^{2}} dx\right) \left(\int_{0}^{a} e^{-y^{2}} dy\right) = \int_{x=0}^{a} \int_{y=0}^{a} e^{-(x^{2}+y^{2})} dx dy = I_{2}(a) \to \frac{\pi}{4}.$$



(d) Let $J(a) = \int_{0}^{a} x^{2}e^{-x^{2}}dx$. Then by Fubini's theorem,

$$J^{2}(a) = \left(\int_{0}^{a} x^{2} e^{-x^{2}} dx\right) \left(\int_{0}^{a} y^{2} e^{-y^{2}} dy\right) = \int_{x=0}^{a} \int_{y=0}^{a} x^{2} y^{2} e^{-(x^{2}+y^{2})} dx dy$$
$$= \iint_{D_{2}(a)} x^{2} y^{2} e^{-(x^{2}+y^{2})} dx dy.$$

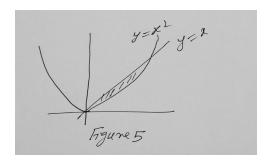
By using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$, we can write

$$\iint_{D_1(a)} x^2 y^2 e^{-(x^2 + y^2)} dx dy = \frac{1}{4} \int_0^{2\pi} \int_{r=0}^a r^4 (\sin 2\theta)^2 e^{-r^2} r dr d\theta.$$

Use similar argument as in solution of (b) to get answer in this case.

5. Let D denote the solid bounded by the surfaces $y=x,\ y=x^2,\ z=x$ and z=0. Evaluate $\iint y dx dy dz$.

Solution: Here y = x, $y = x^2$, z = x and z = 0, implies y = 0, 1. Please see Figure 5.



By Fubini's theorem, we get

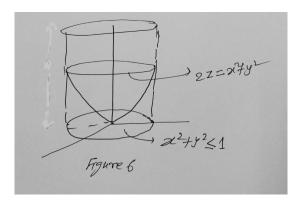
$$\iiint\limits_D y dx dy dz = \int_{x=0}^1 \left(\int_{z=0}^x \left(\int_{y=x^2}^x y dy \right) dz \right) dx.$$

6. Let D denote the solid bounded above by the plane z=4 and below by the cone $z=\sqrt{x^2+y^2}$. Evaluate $\iiint\limits_D \sqrt{x^2+y^2+z^2} dx dy dz$.

Solution: Use spherical polar coordinate $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$, where $0 \le \theta < 2\pi$ and $0 \le \phi < \frac{\pi}{4}$.

7. Find the surface integral $\iint_S z d\sigma$, where S it the part of the paraboloid $2z = x^2 + y^2$ which lies in the cylinder $x^2 + y^2 = 1$.

Solution: Please see Figure 6.

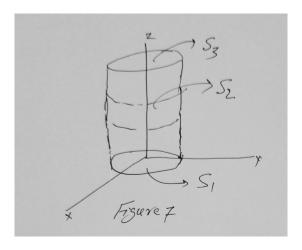


Let
$$z=f(x,y)=\frac{x^2+y^2}{2}$$
 and $D=x^2+y^2\leq 1$.
$$\iint\limits_S zd\sigma=\iint\limits_D z\,\sqrt{1+f_x^2+f_y^2}\,\,dxdy.$$

Use polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ to evaluate the integral on D.

8. What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$.

Solution: We divide the surface of the cylinder into three parts S_i ; i = 1, 2, 3 as shown in the Figure 7.



$$\iint\limits_{S} x^2 z \ d\sigma = \left(\iint\limits_{S_1} + \iint\limits_{S_2} + \iint\limits_{S_3} \right) x^2 z \ d\sigma.$$

Note that S_1 is the bottom of the cylinder given by $x^2 + y^2 \le a^2$ and z = 0. Hence $\iint_{S_1} x^2 z \ d\sigma = 0$. Here S_2 is the vertical surface given by $r(\alpha, \beta) = (a \cos \alpha, a \sin \alpha, \beta)$, where $0 \le \alpha < 2\pi$ and $0 \le \beta \le h$. Hence

$$\iint_{\alpha} x^2 z \ d\sigma = \int_{\beta=0}^h \int_{\alpha=0}^{2\pi} (a\cos\alpha)^2 \beta \|r_\alpha \times r_\beta\| d\alpha d\beta = \frac{\pi a^3 h^2}{2}.$$

Here S_3 is the top of the cylinder given by $x^2 + y^2 \le a^2$ and z = h. This can be parametrized by $r(u, v) = (u \cos v, u \sin v, h)$, where $0 \le u \le a$ and $0 \le v < 2\pi$. Thus,

$$\iint_{S_2} x^2 z \ d\sigma = \int_{u=0}^a \int_{v=0}^{2\pi} (u \cos v)^2 h \|r_u \times r_v\| du dv = \frac{\pi a^4 h}{4}.$$