MA15010H: Multi-variable Calculus

(Assignment 6: Change of variables, triple integral) September - November, 2025

- 1. Using double integral, find the area enclosed by the curve $r = \sin 3\theta$ given in polar coordinates.
- 2. Evaluate the double integral $\iint_D \sqrt{x+y} (y-2x)^2 dy dx$ over the domain D bounded by the lines x=0, y=0 and x+y=1.
- 3. Evaluate the integral $\iint_D e^{(x-2y)} dxdy$ over the domain D bounded by the lines x-2y=0, 2x-y=0 and x+y=1.
- 2x y = 0 and x + y = 1. 4. Compute $\lim_{a \to \infty} \iint_{D(a)} e^{-(x^2 + y^2)} dx dy$, where
 - (a) $D(a) = \{(x,y) : x^2 + y^2 \le a^2\}$ and (b) $D(a) = \{(x,y) : 0 \le x \le a, 0 \le y \le a\}$

Hence prove that (c) $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ (d) $\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$

- 5. Let D denote the solid bounded by the surfaces $y=x,\ y=x^2,\ z=x$ and z=0. Evaluate $\iiint\limits_D y dx dy dz$.
- 6. Let D denote the solid bounded above by the plane z=4 and below by the cone $z=\sqrt{x^2+y^2}$. Evaluate $\iiint\limits_{D} \sqrt{x^2+y^2+z^2} dx dy dz$.
- 7. Find the surface integral $\iint_S zd\sigma$, where S it the part of the paraboloid $2z = x^2 + y^2$ which lies in the cylinder $x^2 + y^2 = 1$.
- 8. What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$.