Assignment 5

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) $L^{\infty}(X, S, \mu)$ contains an almost non-zero function for every measure space (X, S, μ) .
 - (b) If $f:(X,S,\mu)\to\mathbb{R}$ is bounded almost everywhere, then f is measurable.
 - (c) If for $1 \leq p < \infty$, $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$, then μ is a finite measure.
 - (d) Let $\mathcal{S}(\mathbb{R})$ be the space of all continuous functions on \mathbb{R} such that $|x|^{\alpha}f(x)$ is bounded, for any $\alpha \in \mathbb{N}$. Then $\mathcal{S}(\mathbb{R})$ is dense $L^2(\mathbb{R})$.
- 2. Show that the space of all essentially bounded simple functions is dense in $L^{\infty}(X, S, \mu)$.
- 3. Let (X, S, μ) be a measure space and $1 \le p < \infty$. For $f \in L^p(X, S, \mu)$ and $\alpha > 0$ show that $\mu \{x \in X : |f(x)| \ge \alpha\} \le \left(\frac{\|f\|_p}{\alpha}\right)^p$.
- 4. Suppose that $f_n \in L^p(X, S, \mu)$, for $1 \le p < \infty$, with $||f_n||_p \le 1$ and $f_n \to f$ point-wise a.e. Show that $f \in L^p(X, S, \mu)$ and $||f||_p \le 1$.
- 5. Let (X, S, μ) be a measure space and $0 . Then for <math>f, g \in L^+ \cap L^p(X, S, \mu)$ show that $||f + g||_p \ge ||f||_p + ||g||_p$.
- 6. Let $\{E_n\}$ be sequence of disjoint measurable sets. Show that $\sum_{n=1}^{\infty} \alpha_i \chi_{E_i} \in L^p(X, S, \mu)$ if and only if $\sum_{n=1}^{\infty} |\alpha_i|^p \mu(E_i) < \infty$.
- 7. Let f and g be disjointly supported functions in $L^p(X, S, \mu)$. Prove that $||f + g||_p^p = ||f||_p^p + ||g||_p^p$.
- 8. Let $1 \leq p < \infty$ $f \in L^p(\mathbb{R}, M, m)$. Then show that $||f(x+h) f(x)||_p \to 0$ as $|h| \to 0$.
- 9. Let (X, S, μ) be a finite measure space. Let $1 \leq p < q \leq \infty$, where $p^{-1} + q^{-1} = 1$. For $f \in L^q(X, S, \mu)$, show that $\|f\|_p \leq (\mu(X))^{\left(\frac{1}{p} \frac{1}{q}\right)} \|f\|_q$. Further, deduce that $L^q(X, S, \mu)$ is a proper dense subspace of $L^p(X, S, \mu)$.
- 10. Suppose $f \in L^{\infty}(X, S, \mu)$ is supported on a set of finite measure. Then show that f is in $L^{p}(X, S, \mu)$ for all $p \geq 1$ and $\lim_{p \to \infty} ||f||_{p} = ||f||_{\infty}$.
- 11. For $1 , prove that <math>L^1(\mathbb{R}, M, m) \cap L^p(\mathbb{R}, M, m)$ is a proper dense subspace of $L^p(\mathbb{R}, M, m)$.
- 12. Let $1 \le p, q \le \infty$ and $p^{-1} + q^{-1} = r^{-1}$. If $f \in L^p(X, S, \mu)$ and $g \in L^q(X, S, \mu)$, then prove that $fg \in L^1(X, S, \mu)$ and $\|fg\|_r \le \|f\|_p \|g\|_q$. (A generalized Holder's inequality.)
- 13. Let $1 \leq p < q < r \leq \infty$. Then prove that $L^q(X, S, \mu) \subset L^p(X, S, \mu) + L^r(X, S, \mu)$.
- 14. Let $1 \le p < q < r \le \infty$. Show that $L^p(X, S, \mu) \cap L^r(X, S, \mu) \subset L^q(X, S, \mu)$ and $||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda}$, where $\lambda \in (0, 1)$ is given by $q^{-1} = \lambda p^{-1} + (1 \lambda)r^{-1}$.
- 15. Let $1 \le p < \infty$ and $p^{-1} + q^{-1} = 1$. For $f \in L^p(X, S, \mu)$, prove that

$$||f||_p = \sup \left\{ \left| \int_X fg d\mu \right| : g \in L^q(X, S, \mu) \text{ and } ||g||_q = 1 \right\}.$$

- 16. Let (X, S, μ) be a σ -finite measure space. Then show that $||f||_{\infty} = \sup_{\|g\|_1 = 1} \left| \int_X fg d\mu \right|$.
- 17. Let $1 \le p < \infty$ and $f \in L^+(X, S, \mu) \cap L^p(X, S, \mu)$. Define $f_n(x) = \min\{n, f(x)\}$. Then show that f_n increases to f point wise a.e. and $\lim_{n \to \infty} \int\limits_X |f_n f|^p d\mu = 0$.

- 18. Let $\mathcal{B}(\mathbb{R}^2)$ be the σ -algebra generated by Borel subsets of \mathbb{R}^2 (i.e. σ -algebra generated by open subsets of \mathbb{R}^2). Show that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- 19. Let $f:(X,S,\mu)\to\mathbb{R}$ be measurable. Show that $G_f=\{(x,y)\in X\times\mathbb{R},\ y=f(x)\}\in S\otimes\mathcal{B}(\mathbb{R})$. If $(X,S,\mu)=(\mathbb{R},M,m)$, then show that $m\times m(G_f)=0$.
- 20. Let (X, S, μ) be a σ -finite measure space. Let $f: (X, S, \mu) \to [0, \infty]$ be measurable. Show that $A_f = \{(x, y) \in X \times [0, \infty], \ y \leq f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times m(A_f) = \int_X f(x) d\mu(x)$.
- 21. Let $f(x,y) = e^{-xy} \sin x$ and $D = [0,\infty) \times [1,\infty)$. Show that $f\chi_D \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$ and $\int_0^\infty \int_1^\infty f(x,y) dy dx = \int_1^\infty \int_0^\infty f(x,y) dx dy$.
- 22. Let $f(x,y) = e^{-xy} 2e^{-2xy}$ and $D = [0,1] \times [1,\infty)$. Show that $f\chi_D \notin L^1(\mathbb{R}^2, M \otimes M, m \times m)$.
- 23. Let $f \in L^1(X, S, \mu)$ and $g \in L^1(Y, T, \nu)$. Define $\varphi(x, y) = f(x)g(y)$. Show that φ is measurable and $\varphi \in L^1(X \times Y, S \otimes T, \mu \times \nu)$.
- 24. Let $f \in L^1(0,a)$ and define $g(x) = \int_x^a \frac{f(t)}{t} dt$. Then show that $g \in L^1(0,a)$ and compute $\int_0^a g(x) dx$.
- 25. Let $X=Y=[0,1],\ S=T=\mathcal{B}[0,1]$ and $\mu=\nu=m.$ Define $f:[0,1]\times[0,1]\to\mathbb{R}$ by

$$f(x,y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 2y & \text{if } y \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Compute $\int_0^1 \int_0^1 f(x,y) dy dx$ and $\int_0^1 \int_0^1 f(x,y) dx dy$. Whether $f \in L^1(m \times m)$?

- 26. Let (X, S, μ) be a finite measure space and $f: X \to [1, \infty]$ be a measurable function. Compute $\mu \times m\{(x,y) \in X \times \mathbb{R}: y < f(x)\}$.
- 27. Let $E, F \in M(\mathbb{R})$ and $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \chi_E(x)\chi_F(x-y)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable and $\int_{\mathbb{R}^2} f d(m \times m) = m(E)m(F)$.
- 28. Let $\mathbb{D} = \{(x,y) \in \mathbb{R}^2 : y \ge x^2 \text{ and } y \le 1\}$. Show that \mathbb{D} is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable. Find $m \times m(\mathbb{D})$.
- 29. Let P(x,y) be a polynomial on \mathbb{R}^2 . Show that the set $S = \{(x,y) \in \mathbb{R}^2 : P(x,y) = 1\}$ is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable. Compute $m \times m(S)$.
- 30. Let $f: (\mathbb{R}^2, M \otimes M, m \times m) \to \overline{\mathbb{R}}$ be a measurable function. If either of f^+ or f^- belongs to $L^1(\mathbb{R}^2, M \otimes M, m \times m)$, then show that $\int_{\mathbb{R}} \int_{\mathbb{R}} f \, dm \, dm = \int_{\mathbb{R}^2} f \, d(m \times m)$.
- 31. Let $f \in L^1(\mathbb{R}, M, m)$. If $\varphi(x, y) = \frac{f(x+y)}{1+y^2}$, then show that φ is $M \otimes M$ measurable and $\varphi \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$.