Assignment 5

- 1. Let (X, S, μ) be a measure space and $0 . Then for <math>f, g \in L^+ \cap L^p(X, S, \mu)$ show that $\|f + g\|_p \ge \|f\|_p + \|g\|_p$.
- 2. Let (X, S, μ) be a measure space and $1 \le p < \infty$. For $f \in L^p(X, S, \mu)$ and $\alpha > 0$ show that $\mu \{x \in X : |f(x)| \ge \alpha\} \le \left(\frac{\|f\|_p}{\alpha}\right)^p$.
- 3. Let $1 \leq p < \infty$ $f \in L^p(\mathbb{R}, M, m)$. Then show that $||f(x+h) f(x)||_p \to 0$ as $|h| \to 0$.
- 4. Let (X, S, μ) be a finite measure space and $1 \leq p < q \leq \infty$. For $f \in L^q(X, S, \mu)$, show that $\|f\|_p \leq (\mu(X))^{\left(\frac{1}{p} \frac{1}{q}\right)} \|f\|_q$. Further deduce that $L^q(X, S, \mu)$ is a proper dense subspace of $L^p(X, S, \mu)$.
- 5. Show that the space of all simple functions is dense in $L^{\infty}(X, S, \mu)$.
- 6. Suppose $f \in L^{\infty}(X, S, \mu)$ is supported on a set of finite measure. Then show that f is in $L^{p}(X, S, \mu)$ for all $p \ge 1$ and $\lim_{p \to \infty} ||f||_{p} = ||f||_{\infty}$.
- 7. Prove that $L^1(\mathbb{R}, M, m) \cap L^p(\mathbb{R}, M, m)$ is a proper dense subspace of $L^p(\mathbb{R}, M, m)$, whenever 1 .
- 8. Let $1 \le p < q < r \le \infty$ and $p^{-1} + q^{-1} = r^{-1}$. Show that for $f \in L^p(X, S, \mu)$ and $g \in L^q(X, S, \mu)$ $fg \in L^1(X, S, \mu)$ and $\|fg\|_r \le \|f\|_p \|g\|_q$. (A generalized Holder's inequality.)
- 9. Let $1 \le p < q < r \le \infty$. Then $L^{q}(X, S, \mu) \subset L^{p}(X, S, \mu) + L^{r}(X, S, \mu)$.
- 10. Let $1 \leq p < q < r \leq \infty$. Show that $L^p(X, S, \mu) \cap L^r(X, S, \mu) \subset L^q(X, S, \mu)$ and $\|f\|^q \leq \|f\|^{\lambda}_p \|f\|^{1-\lambda}_r$, where $\lambda \in (0, 1)$ is given by $q^{-1} = \lambda p^{-1} + (1 \lambda)r^{-1}$.
- 11. Let $1 \le p < \infty$ and $p^{-1} + q^{-1} = 1$. For $f \in L^p(X, S, \mu)$, prove that

$$||f||_p = \sup\left\{ \left| \int_X fg d\mu \right| : g \in L^q(X, S, \mu) \text{ and } ||g||_q = 1 \right\}.$$

- 12. Let $\mathcal{B}(\mathbb{R}^2)$ be the σ -algebra generated by Borel subsets of \mathbb{R}^2 (i.e. σ -algebra generated by open subsets of \mathbb{R}^2). Show that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- 13. Let $f: (X, S, \mu) \to \mathbb{R}$ be measurable. Show that $G_f = \{(x, y) \in X \times \mathbb{R}, y = f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$. If $(X, S, \mu) = (\mathbb{R}, M, m)$, then show that $m \times m(G_f) = 0$.
- 14. Let (X, S, μ) be a σ -finite measure space. Let $f : (X, S, \mu) \to [0, \infty]$ be measurable. Show that $A_f = \{(x, y) \in X \times [0, \infty], y \leq f(x)\} \in S \otimes \mathcal{B}(\mathbb{R})$ and $\mu \times m(A_f) = \int_X f(x) d\mu(x)$.

15. Let
$$f(x,y) = e^{-xy} \sin x$$
 and $D = [0,\infty) \times [1,\infty)$. Show that $f\chi_D \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$ and

$$\int_0^\infty \int_1^\infty f(x,y) dy dx = \int_1^\infty \int_0^\infty f(x,y) dx dy.$$

16. Let $f(x,y) = e^{-xy} - 2e^{-2xy}$ and $D = [0,1] \times [1,\infty)$. Show that $f\chi_D \notin L^1(\mathbb{R}^2, M \otimes M, m \times m)$.

17. Let $f \in L^1(X, S, \mu)$ and $g \in L^1(Y, T, \nu)$. Define $\varphi(x, y) = f(x)g(y)$. Show that φ is measurable and $\varphi \in L^1(X \times Y, S \otimes T, \mu \times \nu)$.

- 18. Let $f \in L^1(0, a)$ and define $g(x) = \int_x^a \frac{f(t)}{t} dm(t)$. Then show that $g \in L^1(0, a)$ and compute $\int_0^a g(x) dm(x)$.
- 19. Let $X = Y = [0,1], S = T = \mathcal{B}[0,1]$ and $\mu = \nu = m$. Define $f : [0,1] \times [0,1] \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 2y & \text{if } y \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Compute $\int_0^1 \int_0^1 f(x, y) dy dx$ and $\int_0^1 \int_0^1 f(x, y) dx dy$. Whether $f \in L^1(m \times m)$?