MA15010H: Multi-variable Calculus

(Assignment 5 Hint/model solutions: Riemann Integration, Fubini's Theorem) September - November, 2025

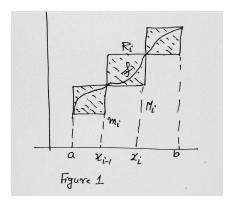
1. If $f: D = [a, b] \times [c, d] \to \mathbb{R}$ is continuous, then f is uniformly continuous.

Solution: Suppose f is not uniformly continuous on D. Then, there is an $\epsilon > 0$ such that for each $\delta = \frac{1}{n}, n \in \mathbb{N}$, there exist sequences X_n , and Y_n in D such that $||X_n - Y_n|| < \frac{1}{n}$ but $||f(X_n) - f(Y_n)|| \ge \epsilon$. Since D is closed and bounded, by Bolzano-Weierstrass Theorem, there will be subsequence X_{n_k} such that $X_{n_k} \to X \in D$. Similarly, Y_{n_k} has subsequence $Y_{n_{kl}}$ such that $Y_{n_{kl}} \to Y \in D$. Hence, without lose of generality, we can assume that $X_{n_k} \to X$ and $Y_{n_k} \to Y$. Thus, we have $||X_{n_k} - Y_{n_k}|| < \frac{1}{n_k}$ and $||f(X_{n_k}) - f(Y_{n_k})|| \ge \epsilon$. It follows that X = Y. By continuity of f at X and Y, we get $||f(X) - f(Y)|| \ge \epsilon$, which is a contradiction.

2. Let f be real valued continuous function on [a, b]. Show that the graph of f is a set of content zero.

Solution: Let $G_f = \{(x, f(x)) : x \in [a, b]\}$. Note that the function f is uniformly continuous on [a, b]. For given $\epsilon > 0$, there exists a $\delta > 0$ such that $|x - y| < \delta$ implies

$$(0.1) |f(x) - f(y)| < \frac{\epsilon}{2(b-a)}.$$



Let $P = \{x_0, \ldots, x_{i-1}, x_i, \ldots, x_n\}$ be a partition of [a, b] such that $\Delta x_i < \delta$. Then (0.1) will be satisfied by every pair of points $x, y \in [x_{i-1}, x_i]$. That is,

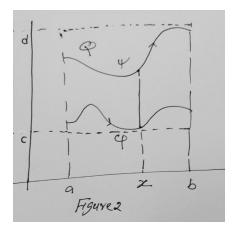
$$-\frac{\epsilon}{2(b-a)} < f(x) - f(y) < \frac{\epsilon}{2(b-a)}.$$

By taking supremum w.r.t. $x \in [x_{i-1}, x_i]$ keeping y fixed and then supremum w.r.t. y, we get $M_i - m_i < \frac{\epsilon}{2(b-a)}$. Note that $(M_i - m_i)\Delta x_i$ is the area of the rectangle $R_i = [m_i, M_i] \times [x_{i-1}, x_i]$ along the graph of f as shown in Figure 1. This shows that $\sum_{i=1}^{n} (M_i - m_i)\Delta x_i < \epsilon$. Thus, $G_f \subset \bigcup_{i=1}^{n} R_i$ and $\operatorname{Area}(\bigcup_{i=1}^{n} R_i) < \epsilon$. Hence G_f is of content zero

3. Let $D = \{(x,y) : a \le x \le b \text{ and } \varphi(x) \le y \le \psi(x)\}$, where φ and ψ are continuous functions on [a,b]. If f is a bounded continuous functions on D, then

$$\iint\limits_D f(x,y)dxdy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy \right) dx.$$

Solution: Since φ and ψ are continuous on [a, b], they are bounded and hence D is a bounded domain in \mathbb{R}^2 .



Let $Q = [a, b] \times [c, d]$ be a rectangle containing D as shown in Figure 2. Extend f on Q as $\tilde{f}: Q \to \mathbb{R}$, where

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in D\\ 0 & \text{if } (x,y) \in Q \setminus D. \end{cases}$$

By definition of \tilde{f} , it is clear that \tilde{f} is continuous on the interior of D. It is clear from Figure 2, the domain D is bounded by the graph of φ, ψ and two vertical line segments, each of content zero. Hence \tilde{f} has discontinuities in Q of content zero. Thus, \tilde{f} is integrable. Now, it only remain to show that

$$\iint\limits_O \tilde{f}(x,y)dxy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy \right) dx.$$

Note that for each fixed $x \in [a, b]$, the integral $\int_{c}^{d} \tilde{f}(x, y) dy$ exists, since the set of discontinuities of $\tilde{f}(x, \cdot)$ contains at most two points, one each on the graph of φ and ψ . Moreover, $G(x) = \int_{c}^{d} \tilde{f}(x, y) dy$ is continuous expect possibly at a and b. Hence G is

integrable on [a,b]. By applying Fubini's Theorem to \tilde{f} on Q, we get

$$\iint\limits_D f(x,y)dxdy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} \tilde{f}(x,y)dy \right) dx.$$

But, this follows from the fact that

$$\int_{c}^{d} \tilde{f}(x,y)dy = \int_{\varphi(x)}^{\psi(x)} f(x,y)dy.$$

Hence the result followed.

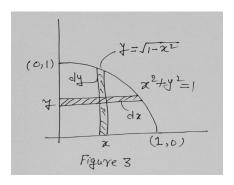
4. Evaluate the following integral applying Fubini's Theorem

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx$$

(b)
$$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx$$

(c)
$$\int_{0}^{1} \int_{y}^{1} x^{2}e^{xy}dxdy$$

Solution: (a) The domain of integration is as shown Figure 3.

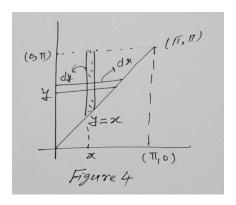


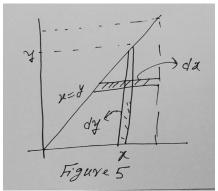
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx = \int_{y=0}^{1} \left(\int_{x=0}^{\sqrt{1-y^2}} \sqrt{1-y^2} dx \right) dy = \int_{y=0}^{1} (1-y^2) dy.$$

(b) The domain of integration is as shown Figure 4.

$$\int\limits_0^\pi \left(\int\limits_x^\pi \frac{\sin y}{y} dy\right) dx = \int\limits_{y=0}^\pi \left(\int\limits_{x=0}^y \frac{\sin y}{y} dx\right) dy = \int\limits_{y=0}^\pi \sin y \ dy.$$

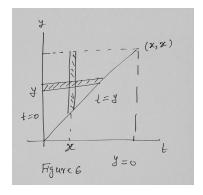
(c) The domain of integration is as shown Figure 5.





$$\int\limits_{0}^{1} \int\limits_{y}^{1} x^{2} e^{xy} dx dy = \int\limits_{x=0}^{1} \left(\int\limits_{y=0}^{x} x^{2} e^{xy} dy \right) dx.$$

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that $\int_{y=0}^{x} \int_{t=0}^{y} f(t)dtdy = \int_{t=0}^{x} (x-t)f(t)dt$. **Solution:** The domain of integration is as shown Figure 6.



$$\int\limits_{y=0}^{x}\left(\int\limits_{t=0}^{y}f(t)dt\right)dy=\int\limits_{t=0}^{x}\left(\int\limits_{y=t}^{x}f(t)dy\right)dt=\int\limits_{t=0}^{x}(x-t)f(t)dt.$$

6. Let f be a continuous function on the bounded domain D. If $\iint_R f(x,y)dxdy = 0$ for all rectangle R in D, then f = 0 on D.

Solution: Suppose there exists $X_o \in D$ such that $f(X_o) \neq 0$. Then without loss of generality we can assume that $f(X_o) > 0$. Since f is continuous at X_o , for $\epsilon = \frac{f(X_o)}{2} > 0$, there exists an open ball $B_{\delta}(X_o)$ such that $|f(X) - f(X_o)| < \frac{f(X_o)}{2}$. This implies $f(X) > \frac{3f(X_o)}{2}$ for each $X \in B_{\delta}(X_o)$. Thus,

$$\iint\limits_{R} f(x,y)dxdy = 0$$

for each rectangle $R \subset B_{\delta}(X_o)$. Since f is continuous on R, it follows that f must be zero on R. If not, then suppose, $f(y_o) > 0$ for some $Y_o \in R$. Then there exists a ball $B_r(Y_o) \subset R$ such that $f(X) > \frac{3f(Y_o)}{2}$ for each $X \in B_r(Y_o)$. But, then

$$0 = \iint\limits_{R} f(x, y) dx dy > \iint\limits_{B_{r}(Y_{o})} f(x, y) dx dy \ge \frac{3f(Y_{o})}{2} \iint\limits_{B_{r}(Y_{o})} dx dy = \frac{3f(Y_{o})}{2} \pi r^{2} > 0.$$

which is a contradiction.

7. Let $f: D = [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function. If f_x, f_y, f_{xy} and f_{yx} are continuous then, by using Fubini's theorem, show that $f_{xy} = f_{yx}$.

Solution: Since f_{xy} is continuous on D, by Fubini's Theorem, we get

$$\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} f}{\partial x \partial y}(u, v) dv du = \int_{c}^{y} \int_{a}^{x} \frac{\partial^{2} f}{\partial x \partial y}(u, v) du dv$$
$$= \int_{c}^{y} \left[\frac{\partial f}{\partial y}(x, v) - \frac{\partial f}{\partial y}(a, v) \right] dv$$
$$= f(x, y) - f(x, c) - f(a, y) + f(a, c).$$

Also,

$$\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} f}{\partial y \partial x}(u, v) dv du = f(x, y) - f(x, c) - f(a, y) + f(a, c).$$

Hence

$$\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} f}{\partial x \partial y}(u, v) dv du = \int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} f}{\partial y \partial x}(u, v) dv du.$$

Since the above equation holds for every choice of $x, y \in D$, we obtain

$$\iint\limits_{R} \frac{\partial^{2} f}{\partial x \partial y}(u, v) dv du = \iint\limits_{R} \frac{\partial^{2} f}{\partial y \partial x}(u, v) dv du$$

for every rectangle $R\subseteq D$. Thus, $\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial^2 f}{\partial y \partial x}$