Assignment 4

1. Let $1 \leq p<\infty$. Define a linear map $T: l^{p} \rightarrow l^{p}$ by $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$. Find the adjoint operator T^{*} of T.
2. Show that the linear map $T:\left(C^{1}[0,1],\|\cdot\|\right) \rightarrow(C[0,1],\|\cdot\|)$ defined by $(T f)(t)=$ $f^{\prime}(t)$ does not have continuous adjoint.
3. Let X and Y be two normed linear spaces. Suppose $T \in B(X, Y)$. Show that $T^{*} \in B\left(Y^{*}, X^{*}\right)$ and $\left\|T^{*}\right\|=\|T\|$.
4. Let $(X,\langle.,\rangle$.$) be an inner product space. Prove the following generalized parallelo-$ gram law.

$$
\sum_{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{2}=2^{n} \sum_{k=1}^{n}\left\|x_{k}\right\|^{2}
$$

5. Let ω be a nth root of unity. Then Show that for x, y in an inner product space X following holds.

$$
\langle x, y\rangle=\frac{1}{n} \sum \omega^{p}\left\|x+\omega^{p} y\right\|^{2} .
$$

6. Let X be an inner product space, let $x \in X$ and let $\left(x_{n}\right)$ be a sequence in X such that $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$. Show that $x_{n} \rightarrow x$ in X.
7. Let X be an inner product space and $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in $\overline{B(0,1)}$ such that $\left\|\frac{1}{2}\left(x_{n}+y_{n}\right)\right\| \rightarrow 1$ as $n \rightarrow \infty$. Show that $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
8. Let X be an inner product space and let $y, z \in X$. If $T x=\langle x, y\rangle z$ for all $x \in X$, then show that $\|T\|=\|y\|\|z\|$.
9. Consider $C_{\mathbb{R}}[0,1]$ with the usual inner product. Let $S=\left\{p_{n}: n=0,1,2, \ldots\right\}$, where $p_{n}(t)=t^{n}$ for all $t \in[0,1]$ and for $n=0,1,2, \ldots$. Prove that the orthogonal complement of S in $C_{\mathbb{R}}[0,1]$ is $\{0\}$.
10. Let M be a closed subspace of a Hilbert space H. If $x \in M$ and if $\left(x_{n}\right)$ is a sequence in M, then show that $x_{n} \xrightarrow{w} x$ in H iff $x_{n} \xrightarrow{w} x$ in M.
11. Using Riesz representation theorem, show that $\left\{\left(x_{n}\right) \in \ell^{2}: \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x_{n}=0\right\}$ is not a closed subset of the Hilbert space ℓ^{2}.
12. Determine $\|f\|$ for the linear functional $f:\left(\ell^{2},\|\cdot\|_{2}\right) \rightarrow \mathbb{K}$, defined by $f\left(\left(x_{n}\right)\right)=$ $\sum_{n=1}^{\infty} \frac{x_{n}}{\sqrt{n(n+1)}}$ for all $\left(x_{n}\right) \in \ell^{2}$.
13. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis of a Hilbert space H. If $f(x)=$ $\sum_{n=1}^{\infty} \frac{1}{3^{n}}\left\langle x, e_{n}\right\rangle$ for all $x \in H$, then determine $\|f\|$.
14. Let H be a Hilbert space and let $\left(T_{n}\right)$ be a sequence in $B(H)$ such that for each $x, y \in H, \lim _{n \rightarrow \infty}\left\langle T_{n} x, y\right\rangle$ exists in \mathbb{K}. Show that $\sup \left\{\left\|T_{n}\right\|: n \in \mathbb{N}\right\}<\infty$.
15. Let $(X,\|\cdot\|)$ be a separable Hilbert space with an orthonormal basis $\left\{e_{n}: n \in \mathbb{N}\right\}$. If $\|x\|_{0}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left|\left\langle x, e_{n}\right\rangle\right|$ for all $x \in X$, then show that $\|\cdot\|_{0}$ is a norm on X which is not equivalent to $\|\cdot\|$.
16. Let $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be a linear map which is defined by

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

Define $\langle T f, g\rangle=\left\langle f, T^{*}\right\rangle$. Find the adjoint operator T^{*} of T.
17. Let T be linear operator on a Hilbert space H such that $(T x, y)=(x, T y)$. Show that T is continuous.
18. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis for a separable Hilbert space H. Define a linear map $T: H \rightarrow H$ by $T\left(e_{n}\right)=a_{n} e_{n}, n=1,2, \ldots$. Show that T is bounded if and only if sequence $\left\{a_{n}\right\}$ is bounded.
19. Let T be a normal operator on a Hilbert space H. Show that $\left\|T^{2}\right\|=\|T\|^{2}$.

